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1. INTRODUCTION 

In order to provide turbulence models useful for computations of the 

flowfields involved in advanced scramjet combustion systems, a number of fea- 

tures of these flowfields must be considered. These combustion systems involve 

supersonic flows with embedded subsonic regions and recirculation zones, and 

appropriate turbulence models for scramjet applications must address each of 

these. The geometry of advanced combustors is often three-dimensional, so that 

the effects of three-dimensionality in the flowfield on the turbulence charac- 

teristics must be taken into account. Moreover, the combustion process in a 

scramjet system is embedded within a highly turbulent flow, so that the effects 

of turbulence on chemical reaction rates must be considered, particularly, in 

the scramjet context, with respect to ignition phenomena. On the other hand, to 

be of maximum utility in scramjet combustor design, the turbulence modeling 

should be as simple and straightforward as is consonant with the requirements of 

overall accuracy. In this application, predictions of mean flowfield structure, 

the effects of heat release, and mean chemical reaction rates are of greatest 

importance: details of the turbulence structure itself can be approximated if 

the approximations introduced do not materially affect the prediction of overall 

mixing rate, chemical reaction rate, and parameters such as the wall skin fric- 

tion distribution and flowfield pressure gradient. Since it can be expected 

that different effects may dominate in different regions of the flow: non- 

isotropy in recirculation regions; compressibility effects in high speed flow 

regions; and turbulence-chemistry interaction effects in regions in which fuel 

ignition is occurring, a modular approach may be the most efficient turbulence 

model overall. In such an approach, each module contains the turbulence model 

elements which best account for the dominant features of each region of the 

flowfield. 

An assessment of turbulence models for scramjet applications was initiated 

in September 1979. During the first year of this work, as outlined in Ref. 1, 

the major effort involved the examination of the multiple dissipation length 

scale (MDLS) turbulence model , since this approach appeared to offer the 



potential for greater generality than existing models in the context of scramjet- 

related flowfields. In addition to this work, other efforts carried out during 

the first year of this program included the definition of a technique for the 

estimation of the initial conditions required by field-equation turbulence 

models (Ref. 1), an examination of the use of a modified dissipation rate 

equation with the basic k-e two-equation turbulence model (Refs. 1, 2), and the 

development of a supersonic-flow compressibility correction to the dissipation 

rate equation in the two-equation (or MDLS) approach (Refs. 1, 3). 

Although the results of Ref. 1 indicated that the MDLS model is slightly 

more general than the basic k-c model, the gain is not worth the added cost of 

solving two additional equations. Furthermore, the flowfields considered in 

the analyses reported in Ref. 1, while fundamental to and underlying many of 

the structures found in scramjet flows, did not involve large scale recircula- 

tionregions where the effects of stress nonisotropy become important. Accord- 

ingly, the focus of the second year's work shifted to an assessment of the 

performance of a variety of turbulence models in low-speed and high-speed 

recirculating flows. Thus, in the work described in this report, several 

turbulence models, including the basic two-equation model, the MDLS variant of 

the two-equation approach, and the algebraic stress model (ASM) first reported 

by Rodi (Ref. 4) and further developed by Sindir (Ref. 5) have been applied to 

the prediction of both supersonic jet and supersonic shear layer flows. 

In complex flowfields it is difficult to separate some aspects of the 

turbulence modeling problem from the numerical problems inherent in different 

computational approaches for solving the governing equations describing the 

flow. These aspects include the treatment of wall boundary conditions, the 

algorithms used to generate the finite-difference form of the equations, and 

the algorithms used to provide the finite-difference solution of the governing 

equations for the particular turbulence model chosen. While not an integral 

part of the work carried out under the present program, several such problems 

were encountered and are discussed. 

The basic features of the different turbulence models investigated during 

the current phase of the turbulence modeling assessment program are outlined in 

the next section. These models include the basic two-equation k-e formulation, 

2 



the MDLS variant of the two-equation approach, the algebraic stress model (ASM), 

and modified versions of the k-c and ASM approaches. Details of the formulation 

of each of these models are included in appendices. Following a description of 

the models, results of the work carried out to assess the performance of the 

models are given in Section 3. The discussion includes observations with res- 

pect to the interaction of the turbulence models with different numerical solu- 

tion techniques. These techniques include a stream-function/vorticity approach 

for the computation of axisymmetric incompressible recirculating flows and a 

time-split MacCormack technique for planar supersonic recirculating flows. Com- 

parisons of the predictions of different turbulence models with data and with 

each other are presented for both planar and axisymmetric low-speed recircula- 

ting flows. Also comparisons of the performance of a two-equation model with 

different eddy viscosity models are presented for a high-speed recirculating 

flow. Following this, conclusions drawn from the work described in this report 

are stated, and work planned to continue the turbulence modeling assessment and 

definition is outlined in Section 4. 
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NOMENCLATURE 

area of control volume surface A 

A T 

a 

al'a2 

b 

c1 

c2 

c1' 

c2' 

C2” 

Cf 

CL? 
'k 

cPl 

Gl 

cP2 

cS 

C’ 
S 

CTl 

CT2 
C 

lJ 
C 

&l 
C 

c2 

area through which the wall stress is applied 

-i%/k (equation (17)); kp - ((kp - kE)l(Yp - YE))Yp (equation 

(45)); coefficient in equation (73) 

coefficients in equations (68) to (71) 

exponent in equation (73) 

coefficient in modeled form of @ ij,l (equation (11)) 

coefficient in modeled form of @ ij,2 (equation (14)) 

coefficient in modeled form of $I ij,l' (equation (15)) 

coefficient in modeled form of 4 ij,2' (equation (16)) 

coefficient in equation (13) 

skin friction coefficient, -cw/0.5 p LIT,, 

coefficient in equation (44) 

coefficient in modeled form of u2u i j (equation (25)) 

coefficient in equation (34) 

coefficient in equation (72) 

coefficient in equation (34) 

coefficient in equation (20) 

,coefficient in equation (19) 

coefficient in equation (34) 

coefficient in equation (34) 

coefficient in equation (24) 

coefficient in modeled production term of E (equation (30)) 

coefficient in modeled destruction term of E (equation (30)) 
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C 
&3 

D 

De 

D ij 

D 

E 

E* 

e 

f 

h 

k 

kP 

kT 

R 

M 

n 

P 

P 

'k 

P ij 

P 

RO 

Rl 

Re 

coefficient in modeled form of vuk(aui/axj)2 (equation (30)) 

material derivative; also jet diameter 

diameter of inlet flowfield, sudden expansion configuration 

term in modeled form of ~ij 2 (equation (13)) 

diffusive transport of (equition (22)) 

coefficient in logarithmic law of the wall 

exp (K*Rev)/Rev (equation (40)) 

normalized anisotropies of Reynolds stresses, (u.u. - 2/3sijk)/k 
1 J 

18)) 

walls (equation (18)); 

17) and ( 

(equations (68) to (71)) 

length-scale function (equations ( 

distance of separation between two 

also step height 

turbulent kinetic energy 

parallel 

production region turbulent kinetic energy 

transfer region turbulent kinetic energy 

characteristic turbulence length scale 

Mach number 

unit normal vector 

static pressure 

production rate of turbulent kinetic energy (equation (23)) 

production rate of turbulent kinetic energy (equation (38)) 

production rate of Reynolds stress tensor (equation (23)) 

instantaneous pressure fluctuations 

radius of pipe before expansion 

radius of pipe after expansion 

Reynolds number 
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ReV 

r 

t 

U 

uC 

u. 1 

pi 

u. in 

uO 

U 

2 

'i 

U.U. 
1 J 

‘iUjUk 
V 

7 

7 

X 

x. 1 

Y 

viscous sublayer Reynolds number (taken as a constant = 20') 

position vector; also polar radius in axisymmetric flows 

time 

streamwise mean velocity 

streamwise mean velocity along flowfield centerline 

time averaged velocity component (i=1,2,3) 

instantaneous velocity component (i=1,2,3) 

maximum inlet velocity 

streamwise mean velocity at dump plane (inlet velocity) 

friction velocity J-r,l 

streamwise component of Reynolds normal stress 

instantaneous velocity fluctuations 

time-averaged components of Reynolds stress 

time-averaged triple velocity correlations 

transverse mean velocity 

transverse component of Reynolds normal stress 

lateral component of Reynolds normal stress 

streamwise distance 

displacement vector 

transverse distance 

Greek Symbols 

a weighting factor in equation (8) 

r 2/3pk2/e (equations (68) to (71)) 

6 ij 

& 

6 

Kronecker delta 

dissipation rate of turbulent kinetic energy 



production region dissipation rate cP 

cT 

cij 

r 

K 

K* 

x 

P 

0 

$ ij,2 

@ij,l' 

4. * 1J 2’ 

G* - 1J ,W 

transfer region dissipation rate 

dissipation rate tensor of Reynolds stresses 

mean dissipation rate for near-wall kinetic energy budget 

(equation (45)) 

the von Karman constant; also wave number 

KC1 ” 1-1 
coefficient in algebraic stress formulation (equations (68) to 

(71)) 

coefficient in equation (45) 

dynamic viscosity of fluid 

turbulent viscosity 

total viscosity, pt + 1-1 

kinematic viscosity of fluid 

density of fluid 

spreading parameter for jets 

Prandtl number for k transport equation (equation (26)) 

Prandtl number for E transport equation (equation (31)) 

shear stress 

fluctuating velocity part of pressure-strain correlation 

(equation (11)) 

mean strain part of pressure-strain correlation (equation (14)) 

near-wall correction t0 ~ij,l (equation (15)) 

near-wall correction to ~ij,2 (equation (16)) 

near-wall effects in the pressure-strain correlation (equation 

(10)) 



Subscripts 

E 

e 

N 

P 

r 

S 

T 

t 

U 

uv 

V 

stream function 

vorticity 

value at the node east of P 

value at the cell boundary between E and P 

value at the node north of P 

value at the node where the control volume is centered 

radial direction 

value at the node south of P 

total 

turbulent 

streamwise direction normal stress 

streamwise direction shear stress 

value at the edge of the viscous sublayer; or transverse 

direction 

value at the node west of P 

value at the wall; or lateral direction normal stress 

streamwise direction 

transverse direction 

8 



2. FLOW EQUATIONS AND TURBULENCE MODELS 

In this section, the theoretical framework used in the turbulent flow 

calculations is outlined. This is accomplished in ten subsections: Section 2.1 

presents the mean flow equations and discusses the consequences of Reynolds time 

averaging; Section 2.2 introduces the Reynolds stress transport equation and 

summarizes the modeling efforts at this level of closure; Sections 2.3 and 2.4 

present alternative closure schemes via the algebraic stress and k-c models, 

,respectively, and compare the relative advantages and drawbacks of each model; 
Sections 2.5 and‘2.6 introduce, respectively, the k and E transport equations 

and the derivation of the modeled forms of these equations for high Reynolds 

number flows; Section 2.7 discusses the modifications introduced to the E 

transport equation; Section 2.8 provides a review of the multiple-dissipation 

length scale approach; Section 2.9 presents a new non-equilibrium wall-function 

treatment for near-wall velocity profiles, turbulent kinetic energy budgets and 

dissipation rates; and Section 2.10 gives the two-dimensional forms of the mean 

flow and turbulence model equations used in the computations. 

2.1 MEAN FLOW EQUATIONS AND REYNOLDS TIME AVERAGING 

The equations of motion in the absence of external force fields take the 

following tensorial form for uniform-density Newtonian fluids: 

au. 
-J-+ 
at & LUj = 

j 
-++$-[;(i$+$)] 

where Ui is the component of instantaneous velocity in the xi direction, p is 

the static pressure, and p and 1-1 are the fluid density and dynamic viscosity, 

respectively. These three equations coupled with the conservation of mass 

principle 

atii -= 
axi 0 (2) 

form the Navier-Stokes equations that predict the dynamic behavior of turbulent 

as well as laminar flows. However, practical turbulent flows contain a cascade 
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of eddy sizes that represent a wide range of time and length scales. Hence any 

numerical scheme using equations (1) and (2') for turbulent flow simulations 

would require a grid fine enough to resolve even the smallest turbulent motions. 

This, at least with the current generation of digital computers, is not possible 

for the solution of practical problems. Since a description of the instantane- 

ous flowfield is beyond our present computing capability, a good compromise 

would seem to be prediction of a mean flowfield which is either "time" or 

"ensemble" averaged. This approach, first proposed by Osborne Reynolds in the 

late 19th century, is the starting point for most of today's applied turbulence 

work. 

Reynolds suggested a statistical average of the instantaneous velocity ui 

with respect to time such that 

1 
r 

T 
ui ' T'~~ 2T -T "ui dt (3) 

where T is a time interval which is long compared with the largest turbulence 

time scales, but shorter than the period over which the averaged flow quantities 

may vary. Inherent in this definition is the idea that the instantaneous veloc- 

ity ci (or by the same token any other flow variable) can be divided into a mean, 

ui ) and a fluctuating component, ui, as 

ui E ui + ui (4) 

It follows, on taking the average of each side of (4), that the mean of the 

fluctuating component is identically zero 

1 
r 

T 

TIFm 2T -T ui dt - 0 

Substituting definition (4) and its counterpart for the static pressure 

P("P = P + p) into the instantaneous flow equations (1), and time averaging as 

shown in (3) leads to the mean flow equation known as the Reynolds equation 

au. au .u. 
-+-ayz+a 
at 

j i 
+g-[;(.;;+q)-uiUj] (5) 
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The only difference between the instantaneous flow equations and the Reynolds 

equation is the appearance of the fluctuating velocity correlation tensor, U.U. 1 J 
defined as 

UiUj dt 

This term, generally known as the Reynolds or turbulent stress, is actually the 

fluctuating velocity counterpart of the mean velocity local acceleration term 

NjUi/aXj. However, it is traditionally taken to the right-hand side and inter- 

preted as a stress rather than an acceleration term. In this form this term 

completely overwhelms its viscous counterpart in most turbulent flows and 

becomes the sole mechanism for diffusive momentum transport. The Reynolds 

equation coupled with the time-averaged form of the continuity equation (2) 

aui 
-= 
axi 0 (6) 

now becomes the governing set of equations for turbulent momentum transfer. 

This set of equations, however, is not "closed" due to the appearance of the 

Reynolds stress tensor uiuj which introduces six additional unknowns to raise 

the total number of variables in the four equations to ten (Vi, P, uiuj). Thus 

additional relationships need to be developed to express u-u. in terms of known 
1 J 

or calculable variables. These efforts constitute the subject of turbulence 

modeling. 

2.2 REYNOLDS STRESS TRANSPORT EQUATION 

An equation governing the transport of Reynolds stress, u.u., can be 

derived from the Navier-Stokes equations for a fluid of unifori iroperties and 

no external force fields by multiplying equation (1) by Uj and adding to it the 

same equation with suffixes i and j interchanged. Time averaging the resultant 

gives 
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auiuj NiUj au. XJi 

at +Ukaxk=- 
aUiUk tit 'j"k K I1 

k k 

I au. au. 
- 2v .&- l-L!-- v 

k axk 

+q!!p) IV 

auj auk 
-- 
axk axi 

-2) 'iP 
- axk t”iujuk 

t6 - 
'iP 

jk P 
t6 v 

ik p 

(7) 

where p is the fluctuating component of the static pressure "P and the 6's are 

Kronecker deltas. 

Equation (7) representing the transport of Reynolds stresses along a mean 

streamline can be divided into the five different terms shown above. Some of 
these terms are "exact" in the sense that they are expressed only in terms of 

the stresses and the mean strain rate, and thus do not require modeling (terms 

I and II); others, however, need to be modeled because they either include 

higher-order correlations (term V) or correlations between turbulence quantities 

that are not known or calculable (terms III, IV, and V). The goal of this 

section is to discuss each of these terms separately and provide the modeled 

forms, when needed, to lay the groundwork for the algebraic stress model, which 

is a special case of this transport equation. 

A. Convective Transport, Term I 

This term expresses the rate of change of the Reynolds stresses uiuj along 

a mean streamline. It is composed of a temporal change, auiuj/at, and a local 

acceleration, Uk auiuj/axk' both of which contain only the stresses and the 

mean flowfield, and thus require no modeling. The temporal term represents a 

time-dependent variation over a period much longer than the interval used in 

the time-averaging and vanishes in a statistically stationary flow. 
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B. Production, Term II 

This term represents the rate of generation of the Reynolds stress uiuj 

through the interaction of the stress with the mean strain rate. Since turbu- 

lence needs a continuous input of energy to maintain itself, this then can also 

be regarded as the energy drain from the mean flow to turbulence. Usually given 

the symbol pij, this term acts like a source in the uiuj transport equation and 

requires no modeling. 

C. Viscous Dissipation, Term III 

This term represents the destruction of the Reynolds stress correlation 

UiUj through viscous action. Being negative definite it behaves like a sink and 

couterbalances the gains in the level of u u i j due to the production pij. 

Traditionally expressed as cij this term includes correlations between various 

fluctuating velocity gradients that are neither known or calculable. So far 

only two workable proposals have been made for modeling this term; both of these 

express E.. in terms of the dissipation rate of turbulent kinetic energy E 

(which is'ihe contracted form (i = j) of ~~~~ given as 

v aui/axk(aui/axk + auk/axi). Each proposal makes certain assumptions with 

respect to the character of the dissipating eddies in modeling E..; therefore, 

depending on the nature of the flow one or the other of the propiials (or even a 

combination of them) may be desirable. The first proposal, by Daly and Harlow 

(Ref. 6), and Donaldson (Ref. 7), assumes that the dissipating motions have the 

same structure as the energy containing eddies (a hypothesis plausible for low 

Reynolds number flows), and relates ~~~ to E through the coefficient uiuj/k. 

The second proposal, first suggested by Rotta (Ref. 8), assumes that dissipating 

motions, at least for high Reynolds number flows, are isotropic in character and 

can be expressed as ~/~cS~~E. A more general representation is a combination of 

both proposals such as 

Eij = a2/3 Lj E + (1 - ~1) y E (8) 
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where c1 is assigned values between 0 and 1 depending on the nature of the flow, 

e.g., a = 1 for high Reynolds number flows. It can also be shown that for high 

Reynolds number flows the term 

is negligibly small so that E.. and E reduce to 
1J 

2 
au. 

2v 
aUi au. 
---A and 2v 2 , axk axk C-7 

respectively. 
k 

D. Pressure-Strain Correlation, Term IV 

This term plays an influential role in the Reynolds stress transport 

equation and has to be modeled with care. The primary function of this correla- 

tion is to change the relative levels of the normal stresses, and to act as a 

source (or a sink) in the shear stress equations. Since it makes no direct 

contribution to the level of turbulence energy but merely redistributes it among 

the normal stresses, it is called a "redistributive" term. 

The first step in modeling this correlation is to establish a Poisson 

equation for the fluctuating pressure. Following Chou (Ref. 9) this is done by 

taking the divergence a/ax% of the transport equation for uR: 

a - -+u 
I 

aUR aUR 1 aP aId2 
-=----u 

a2UQ 
aXR at m ax -+L,---- 

m P aXR m ax, iif-- (URUm - a) 
axm2 axm 1 

(9) 

and imposing the fluctuating velocity continuity constraint auR/axR : 0 to 

obtain the Poisson equation 

_I a2p = -2 aum auR a2 - --- 
p ax: aXR axm aXRaXm 

( 
'turn - 'Rum) 

Integrating this equation over a region of fluid, multiplying by 

(aui/axj + auj/axi) and time averaging yields the following expression for the 

pressure-strain correlation: 
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@ ij,l 4). * 1512 

1 
+GF $ (=, "(i$+,$)- P'($+$$, f) dS 

Area c an 
(10) 

where dV and dS denote, respectively, volume and surface elements about the 

given point, and a/an is the normal derivative at the surface. Prime super- 

scripts indicate quantities evaluated at a distance r from the given point. 

This representation of the pressure-strain correlation can be broken down into 

three contributing terms. These are: @.. 
1J ,I 

resulting from purely turbulence 

interactions, $I.- 
1J 32 

involving interactions between the mean strain rate and 

turbulence, and $ij w representing the effects of rigid boundaries on both 

0 ij,l and $I.. 
1J 32’ 

Mideling of the pressure-strain correlation thus reduces to the 

modeling of each of these terms, as summarized below. The constants appearing 

in the various models are given in Table 2.1, page 19. 

Modeling of Qij 1: The term Gij 1 has long been identified as the only mecha- 

nism in the striss transport equition (7) that could promote a return to a state 

of isotropy. This can be best observed for decaying turbulence where there is 

no appreciable mean strain, and the only term left in equation (7) that could 

equalize the normal stress components and reduce the shear stress is $I.. . 

Also, when isotropic two-point correlations are substituted into the di3fihition 

of (a 
k 

ij 1 (equation lo), this term vanishes, providing further evidence of its 

; uncti& as a promoter of isotropy. The following linear form for ~ij 1 was 
3 

first proposed in Ref. 8: 

Qij,l = -'I E E (uiuj - ~ Gijk) 

where c/k defines a time scale and cl is a constant to be determined from 

experiment. This simple linear form for ~ij 1 is widely accepted and used 
, 
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despite the fact that, as shown by Bradshati (Ref. lo), the actual "return to 

isotropy" process is highly non-linear. More sophisticated non-linear forms 

such as Lumley and Khajeh Nouri's proposal (Ref. 11) have been su,ggested, but 

these have shown no s,ignificant improvement over Rotta's proposal. 

Modeling of ~ij 2: This term in the pressure-strain correlation represents the 

interactions between the mean strain rate and turbulence. Rotta (Ref. 8) 

obtained a simpler form by assuming symmetry properties for the two-point 

correlations and treating the mean velocity gradient aUR/axm as constant over 

the region of integration: 

$I*. - & 
4 

a2u,;lui 
lJ,2 = 

a2ur)luj dV 

m arRarj 1 + argari F (12) 

where r R and rj are the Cartesian components of the position vector :. A 

workable modeled form for this term was first devised by Launder (Ref. 12) and 

then further refined by Naot, Shavit and Wolfshtein (Ref. 13), and Launder, 

Reece, and Rodi (Ref. 14), who, working independently and using different I 

where 

a)- - 
(c; + 8) 

lJ,2 = - 11 (pij - ; 6i jP) - (30 "' - ') k 
aui au. 
-- 

55 ax. 
J 

+ axi 

analytical techniques, obtained the same expression for aij 2:T , 

(8 c; - 2) 

11 (Dij 

P 
ij 

D s - auk - 
ij ( - 

auk 
'iUk ax 

j 
' 'j"k axi -1 

aui 
p f - U.U. - 

1 J ax. 
J 

(13) 

' lJhen equations (11) and (13) are used values of 1.5 and 0.4 are recommended 
for cl and ci, respectively. 
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A simpler degenerate version that only includes the dominant first term in the 

above equation is also widely used (Gibson and Launder, Ref. 15, Samaraweera, 

Ref. 16). Since all three terms in equation (13) vanish under contraction, the 

redistributive nature of ~ij 2 is not destroyed by this approximation, given by 
3 

(14) 

Modeling of 9ij w: Rigid boundaries affect the flowfield by impeding the 

transfer of ene;gy from the streamwise direction to that normal to the boundary, 

and also reduce the relative magnitude of the shear stress. As shown by Shir 

(Ref. 17) and Gibson and Launder (Ref. 15), these effects (contained in the 

surface integral in equation (10)) can be modeled in the form of near-wall 

correction terms $ij 1 and $ij 2: 
9 , 

@I!. 
lJ,l = ‘1 

' ' (Ukum nknm “ij - $-UkUj nkni - sm nknj) f (&) k ii 

near-wall correction to $I.. 
1J ,1 

c$! . 
lJ,2 = “i (@ km,2 "k"m 'ij - i @ik,2 "k"j - s.@jk,2 "k"i) f (&I 

ii 

near-wall correction to 4.. 
1592 

(15) 

(16) 

where r i is the position vector, R is a characteristic turbulence length scale, 

f is the length scale function, and n is the unit normal vector to the surface. 

These terms diminish with distance from a rigid boundary and become negligible 

at great distances. This behavior is achieved by defining the length-scale 
function f(R/niri) in such a way that it vanishes as R/niri approaches zero. 

Here f is assumed to be directiS;2proportional to R/y, with R interpreted as 
the dissipation length scale k /E and y is the normal distance from the 

rigid boundary. The constant of proportionality is chosen to render f of 

value unity in near-wall turbulence. Thus, for a single wall, f becomes 

f= k3'2/c 

,/a3'2y 
(17) 
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where K is the von Karman constant and a = -i/k. For flow between two parallel 

walls both of which influence the flow at a given point it is assumed that the 

effects are additive, i.e. 

(18) 

where h is the distance of separation between the walls. 

E. Diffusive Transport, Term V 

As shown in equation (7) the diffusive transport process includes three 

mechanisms: transport through triple-velocity correlations, transport through 

pressure-fluctuating-velocity correlations, and molecular (viscous) transport. 

At high Reynolds numbers , molecular transport is usually insignificant and is 

not retained in the equation. Diffusive transport through the pressure- 

fluctuating-velocity correlations is also assumed to be negligible as a result of 

Irwin’s study of self-preserving jets in adverse pressure gradients (Ref. 18), 

and Hanjalic and Launder's work on asymmetric plane channel flows. Even though 

Lumley has made some suggestions for modeling this term (Ref. 19), no proven 

models are as yet available. Within these approximations the diffusive trans- 

port term reduces to the triple-velocity correlation which has to be evaluated 

algebraically or from a transport equation. Hanjalic and Launder (Ref. 20) 

arrive at the following form for this correlation after introducing drastic 

simplifications to its transport equation: 

au .u 
Jk - aUkUi - au.u. 

-Id aXR 
+ 'j"R ax2 + 'k% xR (1% 

Daly and Harlow (Ref. 6) have proposed a considerably simpler representation 

for uiujuk that only retains the last term in the above equation 

t 

Lu 'iUjUk = -'s E k R 
auiuj 

3xR cm 

t Values of 0.11 and 0.20 are recommended for cl and cs,, respectively. 
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Thin shear flow calculations by Launder et al. (Ref. 14) and plane wall flow 

predictions by Reece (Ref. 21) show about equal success with data for both 

versions. 

TABLE 2.1. Recommended Values for Turbulence Model Constants 

Reynolds Stress Transport Equations. 

K = 

C lJ = 
Ok = 

0 = & 
C = 

El 
C = 

E2 
Ck = 

C = 
c3 

Cl = 

c2 = 

Ci = 

c; = 

CR = 

0.4187 

0.09 

1.00 

K2/(C - C 
&2 

)c1’2 
Y u 

1.44 

1.92 

0.22 

0.36 (c - c ) 
E2 El 

1.8 - 

0.6 

0.5 

0.3 

2.55 

2.3 ALTERNATIVE CLOSURE VIA THE ALGEBRAIC STRESS MODEL 

An orthodox second-order closure would require the solution of a transport 

equation of the form of equation (7) for each of the stress components. Even 
for two-dimensional flows this can be a formidable task, since, in addition to 

the m=n flow equations (equations (5) and (6)), five other transport equations 

(f or u2, v 2, iv , k, and E) need to be solved. Under certain assumptions, 

however, the stress transport equations can be reduced to a set of 
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algebraic expressions. This idea forms the basis of the algebraic stress model 

to be discussed in this section. 

Following Rodi (Ref. 4) it is noted that the only terms containing gradi- 

ents of Reynolds stresses in equation (7) are those responsible for convective 

and diffusive transport. Therefore, if these gradients can be eliminated, the 

Reynolds stress transport equation reduces to a set of algebraic equations of 

the general form 
--- 
'i"j 

= U.U. 
1 J f up"q' . aUR/aXm, E, k 

The convective and diffusive transport of the stresses can be related to the 

turbulent kinetic energy transport rates by noting that 
-- 

D i;"j - 'f-? ;: + k D 'i'j 
Dtk 

If the rate of variation of uiuj/k along a streamline is much lower than that of 

U.U. 
1 J 

itself, then 

Similarly, 

-- 
D UiUj _ UiUj Dk 

Dt --- k Dt 

DU.U. = 
1 J 

pa(k) + ko 

(21) 

where the operator D stands for the net diffusion rate of the quantity in 

parentheses. If the spatial gradient of uiuj is large compared with that of 

uiuj/k, then 

Also by def 

Therefore, 

the results 

nition (see Sect 

D U.U. 'i"j 
1 J 

= - o(k) k 

ion 2.5) 

Dk -- 
Dt o(k) = P - E 

f equations (21) and (22) are solved for Dk/Dt and D(.k) and 

are substituted into the above expression, it becomes 

(22) 
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k 
P-E 

where the quantity in the brackets is nothing more than the sum of the produc- 

tion, dissipation , and pressure-strain terms in the full Reynolds stress trans- 

port equation, equation (7). Replacing these terms with their modeled forms 

from Section 2.3 (except for the production term , which is exact) produces a set 

of implicit algebraic expressions for the stresses in terms of the mean strain 

rate, turbulent kinetic energy k and its dissipation rate E, and the stresses 

themselves. Hence the final form of the algebraic stress model (ASM) that 
includes near-wall corrections becomes 

'i"j = & ('ij - g &ij' + +ij,l + @ij,2 + ~lij,l + $;j,*) (23) 

where 
aui 

P= - the production rate of kinetic energy -Uiuk 8xk' 

'ij = - 
the production rate of individual Reynolds 

stresses 

e- - 1J ,1 
= -c,E/k (u.u. - 2/3 6 

1 J 
ij k), the modeled form of the contribution of 

fluctuating quantities to the pressure-strain correlation, equation 

0') 

@ ij,2 = -'2 tpij - 2/3 Gijp), the modeled form of the contribution of mean 

strain effects to the pressure-strain correlation, equation (14) 

4': lj,l = "i 
s/k (u u n n k m k m "ij - 3/2 ukuj nkni - 3/2 ukui nknj) f & , 

( 1 ii 
wall correction to Qij ,, equation (15) 

3 

@I. 
1J 32 = c; (Q’ km,2 "k"m "ij - 3/2$. lk,2 "k"j - 3/W jk 2 "k"i) f (alniri)3 3 

wall correction to $I ij 2, equation (16) 
3 

Equation (23) is the version of ASM used in the work described in this report. 
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The algebraic stress model represents a s.ignificant simplification over 

the full Reynolds stress closure and yet it is versatile and is based on a 

plausible derivation. For two-dimensional elliptic flows it requires the 

solution of three implicit algebraic equations for the stresses and two trans- 

port equations for k and E. However, the formulation usually entails a consid- 

erable amount of algebraic manipulation which can be tedious and costly. In 

addition, as discussed in Section 3, special care is needed in incorporating 

these stresses into the mean flow equations to ensure good stability and 

convergence characteristics. 

2.4 ALTERNATIVE CLOSURE VIA THE k-c MODEL 

The k-E model (also known as the two-equation model) developed by Jones 

and Launder (Ref. 22) introduces another degree of simplification to closure of 

the mean flow equations. This model achieves closure by relating the Reynolds 

stresses to the mean strain rate through the Boussinesq approximation. 

-' 'i"j Pk (24) 

The effective (turbulent or eddy) viscosity appearing above, ut, is defined in 

terms of a characteristic length and velocity (an idea apparently borrowed 

from the kinetic theory of gases). If this length is taken as the turbulence 

length scale k 3'2/c and the velocity as k1'2, ut can be expressed as 

where cu is a constant of proportionality. Equation (24) is the version of 

the k-E model used in the present calculations. 

Conceptually the use of an effective viscosity for turbulent flows has 

many drawbacks. Firstly, contrary to the requirements of the kinetic theory of 

gases the large energy containing eddies are not rigid bodies which retain their 

identity, and also their "mean free paths" are usually not small compared with 

the flow dimensions. In addition the simple isotropic effective viscosity 

concept breaks down for complex turbulent flows where the shear stress and the 

velocity gradients may have opposite signs, and the effects of the non-equal 
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normal stress components and secondary strain rates may be substantial. 

However, despite all these shortcomings the k-c model has been successful in 

predicting a wide range of thin shear flows and also some complex turbulent 

flows (with minor modifications to the basic form given in equation (24)). The 

simplicity of its formulation and excellent numerical stability characteristics 

have made this model popular in turbulent flow computations. 

2.5 MODELING OF THE k TRANSPORT EQUATION 

Both the k-c viscosity and the ASM require evaluation of the turbulent 

kinetic energy and its dissipation rate to define turbulent time and length 

scales. This and the next section will present the modeled form 

transport equations, respectively. 

The turbulent kinetic energy equation can be obtained from 

stress transport equation, equation (7), by setting i = j and di 

of the k and E 

the Reyno Ids 

viding by 2 

k= - 
aUi 

- 'iUk ?$k 

aui aui 

-v~5q~-v 

aUi auk 
2xpq 

This equation when modeled and reduced to its high Reynolds number form 

becomes 

ak _ - aui 
-- 

- 'iUk axk 
a 

' + axk 4 

ak - k ak -- 
' axk + 'k 'iUk E axi 

where within the high Reynolds number approximation E: is represented by 

aui aui - 

' axk axk -- ; and u:uk/2 has been taken as ck uiuk -kzk, the form 
i 

(25) 

proposed by Daly and Harlow (equation (20)). The terms v 
aui auk 

aXkaXi and pui 6ik 

have been neglected as discussed in Section 2.2, part E. This form of the k 

transport equation, suitable for use with the ASM, can be further simplified for 
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the k-c model by introducing the additional postulate uiuk = 2/3 6ik k into the 

diffusion term to yield 

aui 
-- 

- 'iUk axk 
+ 3 ak 

-1 ok axk 
(26) 

where u k = 3/2cp/ck is the turbulent kinetic energy Prandtl number. 

2.6 MODELING OF THE E TRANSPORT EQUATION 

The dissipation rate of kinetic energy E is evaluated from its transport 

equation formed by multiplying the ui transport equation (equation (9)) by 

2v aui/axj and time averaging: 

a b C 

(27) 

d e 

Before this equation can be solved, however, all the terms appearing on the 

right-hand side have to be modeled in terms of known or calculable variables. 

This is a formidable task in itself since generally no measurements of these 

quantities are available. 

Terms a and b represent, respectively, generation due to vortex stretching 

and secondary generation by the mean flow. Both of these terms are shown by 

Tennekes and Lumley (Ref. 23) to be of negligible importance at high Reynolds 

numbers, and are dropped from the equation. Terms c and d on the other 

hand serve as the primary source (generation due to vortex stretching by 

turbulence) and sink (destruction by viscous action), respectively, for this 

24 



- 

correlation and become increasingly important at high Reynolds numbers. Most 

prefer to model the sumt of these terms as suggested by Launder et al. (Ref. 14). 

C EP-c E2 

9 &2 E- (28) 

where c 

"I 

and cc are two constants evaluated, respectively, by reference to 

near-wal turbulgnce and decay of grid turbulence. The currently recommended 

values for these constants are given in Table 2.1. 

The diffusion term e is treated by neglecting the pressure-diffusion terms 

and modeling 

‘aUi 
(-) 

2 

’ ‘k ax. as -c Lu - - a& 
k i axi (29) 

J c3 & 

This form was proposed by Hirt (Ref. 24) and also was used by Hanjalic and 

Launder (Ref. 20). The constant c can be expressed in terms of c and c as 

0.36(c - c ). c3 9 E2 

c2 9 
When these approximations are introduced into equation (27) the modeled E 

transport equation becomes 

g+u ST-= c IP-c k axk ET k 
a& - k aE -+ c u.u -- axk c3 I k E axi (30) 

The form of the E transport equation given by equation (30) is suitable for use 

with the ASM. The k-E model version is obtained by approximating uiuk as 

2/3 Gikk in the diffusion term to yield 

z+u is-= c IP-c k axk E, k 
+"t?L 

'E axk 
(31) 

where CI E is the turbulent kinetic energy dissipation rate Prandtl number equal 

to 

t Each of these terms becomes infinitely large as the Reynolds number approaches 
infinity. However, they have opposite signs and their sum remains finite. 
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K 2 

(CE2 - cc,) f2 
This follows directly from the definition of c : 

E3 

C - c 312 
&2 9 5 

&3 2/3~~ 

2.7 MODIFICATION TO THE E TRANSPORT EQUATION 

Probably the weakest point in the closure by both the ASM and k-c models is 

the determination of the turbulent kinetic energy dissipation rate. Lack of 

measurements make the modeling of the E transport equation a challenging task. 

Since this equation is source dominated, the modeling of the source and sink 

terms is very critical. Equation (28) is an attempt to approximate the sum 

of these quantities by reference to the production rate of turbulent kinetic 

energy P+, the dissipation rate c, and a turbulent time scale k/E. It has 

been argued by Pope (Ref. 25) and Hanjalic and Launder (Ref. 2) that the 

production term in the E equation should be made more sensitive to irrotational 

straining. Both of these schemes propose to incorporate a new term into the E- 

equation that could impart this characteristic. However, the success of these 

methods in some free shear flows did not carry over to more complex recircula- 

ting flow predictions. 

A different approach has been taken by Hanjalic, Launder and Sindir (Ref. 5) 

who suggest replacing P (= - iiiUj (aUi/axj)) in the E transport equations 

(30) and (31) by 

(32) 

tThe plausibility of this proposal has long been debated since the fine scale 
motions E represents are isotropic in character and should not be directly 
sensitive to the turbulent kinetic energy production rate (which involves large 
energy carrying eddies strained by the mean flow). 
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There is no compelli,ng argument to s,uggest that the effects of mean strain 

should be accountable by a term exactly proportional to the kinetic energy 

generation rate. Equation (32) has been adopted because it displays greater 

sensitivity than the original to streamwise curvature - a characteristic that 

experiments have shown to be desirable. In a straight thin shear flow in 

local equilibrium the proposed form reduces very nearly to that of the "standard" 

E equation. It was hoped that this modification would produce significant 

improvements in recirculating flow predictions where there is substantial stream- 

wise curvature. As discussed in Section 3, this generally proved to be the 

case. The form given in equation (32) was used with both the ASM and the k-E 

models. When equation (32) is used, the turbulence models will be referred to 

as the "modified" ASM and the "modified" k-c, respectively, to differentiate 

from the standard versions of the models. 

2.8 MULTIPLE-SCALE MODELING 

Both the ASM and the k-c approaches are single-point models which adopt 

a single time scale proportional to the turbulence energy turnover time, namely 

k/E. However, it is overly simplistic, at least conceptually, to assume that a 

single time scale can successfully characterize the rates of progress of differ- 

ent turbulent interactions. This realization led Hanjalic, Launder and 

Schiestel (Ref. 3) to develop the multiple-scale approach that is discussed next. 

The key to the new multiple-scale approach is the recognition that while 

the dissipation equation (equation (31)) and the kinetic energy equation 

(equation (26)) both contain production and dissipation terms, these processes 

occur in different spectral regions of the flow. That is, turbulence energy 

production occurs in the larger eddies in the flow, while dissipation phenomena 

involve primarily the smaller scales. Thus, there must be a transfer of energy 

from the larger scales to the smaller, and this transfer can, in certain situa- 

tions, introduce a lag phenomenon, so that turbulence energy production and 

turbulence energy dissipation do not necessarily both increase or decrease in 

the same region of the flow as is implied by equations (26) and (31). 
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To introduce a model in which the evolution of the different scales 

appropriate to the large-eddy production region and the small-eddy dissipation 

region can be accounted for, Launder and co-workers introduced a partitioning 

of the turbulence ene,rgy and its dissipation rate, as shown schematically in 

Figure 2.1. In this figure, a partitioning into three regions is shown. For 

wave numbers less than K,, a production region is defined, characterized by a 

turbulent kinetic energy kp and a dissipation rate cP. This dissipation rate 

controls the transfer of energy through the transfer region K 1 <K<K 
2' For 

wave numbers higher than K 
2' 

turbulence energy is dissipated as heat. A 

separate kinetic energy and dissipation rate equation is written for the 
transfer region, characterized by kT and ET) and the production term in the 

kinetic energy equation for the transfer region is equal to the dissipation rate 
E 

P 
in the production region. 

The partitioning of the energy spectrum that is the key feature of the 

multiple-scale model can clearly be carried out as many times as computer 

capacity will allow, but in practice, a partitioning into three regions appears 

to be sufficient (Ref. 3). This requires two sets of transport equations, given 

the assumption (basic to most turbulence modeling) that the mechanisms involved 

i;, the final dissipation of turbulent kinetic energy into thermal energy are 

capable of accepting all of the energy transferred to them. This assumption is 

the reason that the physical fluid viscosity does not appear in the turbulence 

dissipation rate equations and is supported by the observed Reynolds number 

invariance of fully-turbulent flows. Further, in practice it also is observed 

that the exact point in the wave-number spectrum at which the energy spectrum is 

partitioned does not appear to exert much influence on the results; however, it 

does appear to be influential in initial condition determination (Ref. 1). 

The model equations for the production and transfer region turbulent 

kinetic energy and dissipation rate are similar in form to the k and E transport 

equations discussed in Sections 2.5 and 2.6, respectively. They are: 

Production Region 

ak A + uk 2 = pk - EP + at k 
(33) 

28 



- 

K1 “2 
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FIGURE 2.1. Spectral Division of Turbulence Energy 
and Dissipation Rate. 
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& 
P -Lp 

lkkp 
(34) 

Transfer Region 

akT akT _ a 
r+ukr-& -E +- 

k P T axk 
(35) 

acT aET 
at 

EpET-C 
+ 'k ?$ = 'T, kT T2 

s+e[(v +$)$;] (36) 
kT 

in which the subscript p refers to the production region and T to the transfer 

region. In this formulation, the turbulent viscosity is given by 

k 

WT = PC,, (kp + kT) 8 
P 

and 

Pk = 
aui 

-'i'j ax 
j 

(37) 

(38) 

This formulation introduces five coefficients, compared to three for the two- 

equation model, but values for several of these coefficients can be inferred 

from two-equation model results and from examination of limiting cases. The 

procedure used to establish the coefficients is described in detail in Ref. 3; 

the results are 

cPl 
= 2.2, c 

p2 
= 1.8 - 0.3 (t - l)/(%+ 1) 

'T, = 1.08$, c 
cT T2 

= 1.15, CM= 0.09 

2.9 \JALL-FUNCTION TREATMENT 

Most turbulence models including the present versions of the ASM and k-E 

models) are devices for high Reynolds number flows. However, in the vicinity of 
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solid boundaries where the velocities are small, the low Reynolds number effects 

previously neglected become significant and should be accounted for. This can be 

accomplished either by solving the low Reynolds number form of the transport 

equations or by developing wall-functions that introduce these effects into the 

existing high Reynolds number models. Chieng and Launder (Ref. 26) found that 

the first option required vast amounts of computer time due to the slow conver- 

gence characteristics of the low Reynolds number models. On the other hand a 

new wall-function treatment proposed by the same authors was shown to incorpo- 

rate these effects with practically no increase in computing time. An expanded 

version of this treatment is used in the present study. 

A. Near-Wall Velocity Profile and Drag Law 

In flows where the principal source of turbulence energy generation lies 

remote from the walls and the diffusion of energy is towards the surface two key 

approximations can be made in devising wall-functions. Firstly, the dominance 

of the walls on the near-wall length scale can be taken as complete, i.e., 

outside the viscous sublayer (where the flow is viscous but not laminar) the 

turbulence length scale is held to depend, for a limited region near a wall, 

only on the normal distance to the surface. Secondly, the viscous sublayer 

thickness y, is assumed to adjust itself according to the external turbulence 

energy such that the sublayer Reynolds number Rev - yvkv "'/v (where kv is the 

turbulence kinetic energy at the edge of the viscous sublayer) is a universal 

constant equal to 20. Under these conditions Chieng and Launder (Ref. 26) 

propose a new wall-function treatment which is discussed below. 

Figure 2.2a shows a typical near-wall scalar cell (bounded on the west side 

by a wall) on which the following discussions are based. The grid is so 

arranged that node P lies outside the viscous sublayer in the fully turbulent 

region. The shear stress at the wall is estimated by assuming that the mean 

velocity component parallel to the wall varies with height over the fully 

turbulent region as proposed by Launder and Spalding (Ref. 27) 

l/2 

UkV 
yk1'2 

m = -$ Rn E* --$ (39) 
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with the exception that the kinetic energy is now evaluated at the edge of the 

viscous sublayer?. Solving this equationfor.Tw and evaluating the resultant at 
node P produces the drag law for non-equilibrium turbulent flows 

T 
W 

= K* p Up ki'2/(!Ln E* yp ki'2/v) (40) 

l/4 where K* = KCu and E* = EC l/4 
1-I - 

E* can also be evaluated in terms of Rev by 

matching the linear velocity profile in the viscous sublayer written as 

Uk"2 
V 

yk1'2 
V =- 

Tw/P V 

with the fully turbulent velocity profile (equation (39)) at y, to get 

E* = exp (K*Re,)/Re,. 

B. Near-Wall Turbulent Kinetic Energy Budget and Dissipation Rate 

The near-wall kinetic energy levels are obtained from the solution of the k 

transport equation (equations (25), (26)) modified to reflect these effects. The 

convection and diffusion terms require no changes and are treated in a standard 

way. The production and dissipation terms, however, need to be changed to 

include the near-wall effects. 

The evaluation of the mean production rate of k requires specifying the 

local turbulent shear stress distribution over the near-wall cells. As shown in 

Figure 2.2~ a piece-wise continuous shear stress variation is assumed. 

'The conventional law-of-the-wall 

EYE% -_- = $!Zn v 

valid for flows in local equilibrium (P = E) can be thougvj20f as a limiting 
case of equation (39) obtained by replacing k with T lpc 
brium value of k). This also shows that K* ='KC 'I4 %d 'k* = 

(the ,l,p4zal equili- 

IJ 
EC, 
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0 OLY <Y, 
-ct = (41) 

Tw + he - Tw)3/Ye Yv L Y L Ye 

This way the stress vanishes in the viscous sublayer, increases abruptly at 

the edge (y = y,), and then varies linearly over the remainder of the cell. The 

mean production rate of k per unit volume can then be evaluated by integrating 

-ct(N/8y + aV/ax) over the surface of the cell 

dy. 

Substituting equation (41) for ~~ and equation (39) for U and integrating, 

this expression reduces to its final form 

Tw(Ue - UJ ‘I b Y 2. 
+ 

w e - Tw) 

ye K*pk;'2 ye 

(1 - y,Iy,) + TW g + (Te - Tw) g 1 - j+ 
[ 0 e 

(42) 

The mean dissipation rate of kinetic energy is evaluated by integrating the 

E distribution over the volume of the cell. In the viscous sublayer the dissi- 

pation rate is shown to be equal to 2v(ak "2/ay)2 by Pope and Whitelaw (Ref. 25), 

and this expression , when coupled with the assumed parabolic variation of 

kt (= kv(y/yv)2) in the same region becomes 

E = 2vkv/y; (43) 

In the fully turbulent region, following Spalding (Ref. 29), E is taken to vary 

as 

E = k3'2/c,y (44) 

t This variation of k corresponds to a linear increase of fluctuating velocities 
with distance from the wall, and also has a zero gradient at the surface. 
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where cR is a universal constant given in Table 2.1 as 2.55. The mean dissipa- 

tion rate can now be evaluated by integrating (43) over the viscous Sublayer and 

equation (44) over the fully turbulent region (assuming a linear k variation as 

shown in Figure 2.2b), and averaging the resultant to obtain 

3/2 _ (I') + 2a (klj2 - klvi2) + AC] 

where 

XE = ,W 

XE = 2(-a) 

and 

ifa> - 

ifa< 

(45) 

In this equation kp and kE are the k values at nodes P and E, respectively, and 

ke represents the value at the eastern boundary of the cell as depicted in 

Figure 2.2b. 

The level of k, is obtained by extrapolating the line through kp and kE to 

y = j,, hence 

k = kp + - (kE 
V yE - yp 

- kp) (46) 

The thickness of the viscous sublayer y, and the mean velocity at the location 

Uv are then expressed as 

YV 
= vRev/ki'2 (47) 
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and 

U,, = Rev(~,lp)lk~lZ 

It should be noted that y, appears in the above expression for kv 

(equation (46)); hence to obtain a non-iterative solution the following cubic 

equation for kv (obtained upon substituting for y, from equation (47)) has to be 

solved: 

kv = kp + 
Yp 

-l/2 - vRevkv 

'E - yp (kE - kp) 

Alternatively, an iterative scheme that uses the previous iteration level value 

of Y, in (46) can be used to evaluate the current kv values. 

2.10 MEAN FLOW AND TURBULENCE MODEL EQUATIONS USED IN THE COMPUTATIONS 

The transport and auxiliary equations+ presented in the previous sections 

reduce, in the case of two-dimensional turbulent flows, to the following 

A. k-E Model 

Conservation of Mass 

3Q+zP!i+l22! =o 
ax r ar (48) 

x-Momentum 

apu + apu2 aP -- 
at ax 

+ 1 arpUV _ ~ - - s + & (2uT $) + +& [rpT($ + $$)I r ar (49) 

'These equations are written in a general form to accommodate both Cartesian and 
axisymmetric coordinates. For planar predictions r is set equal to 1 and the 
terms enclosed in boxes are omitted. For axisymmetric flows r equals to the 
polar radius. 
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- 

r-Momentum 

apv + apuv 
at 

+ 1 avV2 = 
ax r ar 

k Transport Equation 

apk + apUk -- 
at ax 

+1arpVk= pp 
r ar 

E Transport Equation 

= pc IP 
El k 

- PC 
E2 

where 

Turbulence Model 

'It 
k2 

= CUP -g- 

2 
cl K =- 

E 

( 
C 

E2 
- c 

1 

,1/2 

El 1-I 

where 

(51) 

(52) 

(53) 

and the constants c 
u' 'k' 'y' 'E2 and K are defined in Table 2.1. 
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B. Multi-Scale k-E: 

Conservation of Mass 

x-Momentum 

%!A+ apu2 
at ax 

r-Momentum 

k Transport Equations 

(54) 

Model 

ap + apu + 1 arpv _ o 
at ax r ar 

+ WJVr _ 
ar (55) 

+ apV2r - ___ - 
ar 

-g+g jJ 
[ T(%t%)]t%(2'Tr%) 

(56) 

= PP - pE Pt~[~t~)~jt~~[r(IIt~)~] (57) 

aPkT aPukT ardlk~ 
at + ax + ar 

= p& 
P 

- PET + &[(lJ + $)$I+ h&[r (U + $)>I (58) 

E Transport Equations 

=C .p-c 

p1 p 
p2 $ t$+tFY$$+~$++ +$-)>I (59) 
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apET aPUsT arPkT 
-- 

at + ax + ar 

'pET 
= 'T1 kT - 'T2 kT '+s[k +$)$I t+&[r(p t$)>] (60) 

where 

(61) 

cPl 
= 2.2 

cp2 
= 1.8 - 0.3 C(kp/kT - 1 )/(kp/kT + 111 

CT1 
= 1.08 E~/E~ 

CT2 
= 1.15 

Turbulence Model 

I-it 
fk fkT)% 

= PCI-( - p 2 
EP 

ok = 1.0 

0 = 1.3 & 

?J 
= 0.09 

UT = lJt + 'J 

C. Algebraic Stress Model 

The algebraic stress model given below includes wall effects in both the 

the x- and r-directions. Here following Reece (Ref. 21) it is assumed that the 

influence of both sets of walls are simply additive, and there are no cross- 

correlations due to corner effects. Either or both of these wall effects can be 

removed by assigning a value of zero to their corresponding length-scale func- 

tions, f, and frt. 

t f, and fy for planar flows. 

39 



Conservation of Mass 

x-Momentum 

* + 322. + 1 awv - o 
at ax r ar 

= aP a ---+-- 
ax ax 

r-Momentum 

apv 
at 

+ apuv 
ax 

+ 1_ arpV2 
r ar 

(62) 

(63) 

= -I-[ (64) 

(65) 
k k r G $- + rpc k 2 ak 

k? % 

E Transport Equation 

ape + apk + 1 arpV& -- 
t ax r-r- 

= pc ;P-PC 2 a Et k 2 a& k - aE 

El E2 k ax 
% pc 1-I ax E3 

r u i&y + PCE3 E uv ar 

(66) 

k Transport Equation 

a+ apUk + 1 arpVk 
ax r ar 

- 

where 

(67) 
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Turbulence Model 

2 
-PU = r[(2 t 4alx + alr)(eu + 2/3) i$+ 3a2x(eu + 213) 

- (1 + 2alx + 2alr > (ev + 2/3) g - l.5a2,(ev + 2/3) 

- (I + 2alx - alr)(ew + 213) F 

+ (2 + 4alx + air) euv $! - (1 + 2al~ + 2al r) euv ax s] - 2/3pk (68) 

-pv2 = r[-(1 t 2alx + 2alr)(eu + 2/3) -!$ - 1.5 a2x(eu + 2/3) 

t(2+a lx + 4alr)(ev + 213) g + 3a2,(ev + 213) 

- jl 
? 

- alx + 2alr)(ew + 213) F 

- (1 + 2alx + 2alr > e uv -$+t (2 + a lx + 4alr ) e uv El - 2/3pk (6% 

2 
-PW = r[-(I t 2alx - a14)(eu + 2/3) g - l.5a2x(eu + 213) 

- (1 - alx t 2alr)(ev + 2/3) i$ - l.5a2,(ev + 213) 

I 
t(2+a lx + alr)(ew + 2/3) F 

- (1 + 2alx - air) e,, $ - (1 - alx + 2alr > e uv El - 2/&k 

-puv = r[1.5(1 + 1.5alx + l.5alr)(eu + 213) g L 

t 1.5(1 + 1.5alx + l.5alr)(ev + 213) $ 

I t 1.5(1 + 1.5alx + 1.5alr) euv F 
I 
+ 2.25b2x + a2r uv >e 1 

(70) 
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where 

alx = c2c2'fx/(l - c2) 

a2x = Cl' ; fx/(l - c2) 

r = 2/3pk2/e 

e = u 
u ( 

2 - 2/3k)/k 

e 
w ( 2 - 2/3k)/k = w 

fx = 

/ 

fr= { 

\ 

' k3'2/E 

K/a312r 

k312/E 
, K,a3/2 1 - 

[-U/r) + (l/h - r)] 

air = c2c2'fr/(l - c2) 

a2r = Cl' ; f,/(l - c2) 

x = (1 - c,)/Uc, - 1) + P/E) 

e = v 
v ( 

2 - 2/3k)/k 

e uv = G/k 

single wall 

parallel walls 

single wall 

parallel walls 

(e.g. coaxial pipes) 

ck’ cE , cE , cE , cl’ 5 cl’ and c2 ' are constants defined in Table 2.1, 

and L nd h2are a 2 he distances of separation, respectively, between 

the parallel walls in the x- and r-directions. K is the von Karman constant 

(0.4187) and "a" is the near-wall value of -z/k (generally taken as 0.25). 
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3. ASSESSMENT OF TURBULENCE MODELS FOR SCRAMJET APPLICATIONS 

Three major areas were considered in the assessment of turbulence models 

for scramjet applications carried out under this program. These areas involved 

the development of a compressibility correction technique to extend the accurate 

prediction capability of the thin shear-layer MDLS or k-c models to highly 

supersonic flows; the investigation of the performance capabilities of the k-E, 

MDLS, and ASM models (and the modified k-e and ASM approaches outlined in 

Section 2) in subsonic recirculating flows, both planar and axisymmetric; and 

the development of the k-e and ASM approaches for the prediction of supersonic 

recirculating flows. In the latter two areas problems of turbulence model 

application were encountered that highlight the interaction between turbulence 

modeling and numerical solution techniques, and these problems and their solu- 

tion are described in the subsequent discussions. 

3.1 COMPRESSIBILITY CORRECTION APPROACH 

The basic approach followed in the development of a compressibility correc- 

tion technique involved the introduction of a modification to the term represent- 

ing the dissipation rate production in the dissipation rate expression. Using 

the approximation introduced by Hanjalic, Launder and Sindir and given by 

equation (32), this expression becomes, for thin shear flows 

; PK = p(c, 
1 

cp + c; at2 
1 ) kk, ar (72) 

For the MDLS model, cp = 2.2 and cV = 0.09. As described in preliminary form in 

Ref. 2, the form of thk correction was taken to be 

cPl' = -0.11 + aMb (73) 

for M 2 1, where the coefficients a and b are determined from a parametric 

examination of supersonic jet core length and supersonic shear layer growth rate 

predictions. Results of a trial-and-error correlation of supersonic jet core 

length data produced a coefficient fit of the form 
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cPl' 
= -0.11 t o.O075M, (M 2 1) (74) 

that is, a = 0.0075 and b = 1, where M is the local Mach number which varies 

radially and axially throughout the flow. The results of MDLS model predictions 

of jet core lengths are shown in Figure 3.1, as compared to data from a variety 

of sources (Refs. 30-35), and it can be seen from the figure that the increase 

in jet core length as a function of Mach number that occurs for M > 1 is well 

represented. Without the correction given by equation (74), the predicted core 

length trend for M > 1 is equal to that seen in Figure 3.1 for M < 1. Results 

obtained using this correlation with the MDLS model were also compared with the 

supersonic shear layer growth rate data correlation described in Ref. 38, as 

shown on Figure 3.2. While the agreement between the predicted shear layer 

growth rates and those obtained from the experimental data correlationVof Ref. 

36 is not as good as for the supersonic jet potential core lengths, the pre- 

dicted results are in considerably better agreement with the overall trend of 

the data using the correction given by equation (74) than are results obtained 

with no correction (Ref. 1), in which there is essentially no change in shear 

layer growth rate with Mach number for M > 1. 

It should be noted that the sensitivity of jet potential core length and 

shear layer growth rate to Mach number exhibited in Figures 3.1 and 3.2 is inde- 

pendent of the observed sensitivity of these parameters to other aspects of the 

flowfield initial conditions. For example, it is well known that potential core 

lengths for subsonic, essentially incompressible round jets are strongly depen- 

dent on the state of flow at the jet exit: laminar, thin boundary layer 

exit conditions produce considerably shorter core lengths than do exit 

conditions which involve thicker, turbulent boundary layers. This phenomenon is 

related to the presence just downstream of the jet exit, in the thin laminar 

boundary layer case, of vertical large scale structures which produce locally 

large mixing rates. These structures do not develop if the jet exit flow 

involves thicker turbulent boundary layers. In the case of the present computa- 

tions (and the experiments to which their results are compared) the initial 

condition in all cases involved a relatively thick turbulent boundary layer at 

the jet nozzle exit. Thus the other aspects of initial condition specification, 
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which also affect the determination of velocity potential core lengths, do not 

enter the comparisons just discussed. 

3.2 ASSESSMENT OF MODELS FOR SUBSONIC RECIRCULATING FLOWS 

3.2.1 Planar Flows 

The predictive capabilities of a total of six turbulence models were examined 

for planar backward-facing step flows using the STEP family of elliptic codes 

(Ref. 5). The turbulence models were the k-e model, the multi-dissipation- 

length-scale model, the algebraic stress model (only cross-stream+ wall effects), 

"modified" k-e model, "modified" algebraic stress model (only cross-stream wall 

effects), and multi-wall algebraic stress model (both cross-stream and stream- 

wise++ wall effects). These models have been discussed in detail in Chapter 2. 

Before definitive predictions of the test cases were obtained, (i.e., grid- 

independent and fully converged), a preliminary study was conducted to assess 

the relative predictive capability of the models. The multi-dissipation-length- 

scale (MDLS) model when applied to backward-facing step flow computations failed 

to improve on the standard k-E model predictions. However, the concept of 

multiple time and length scales is physically sound, and is also appealing in 

the sense that it enables separate modeling of turbulent processes proceeding at 

different rates. A more extensive optimization of the coefficients than was 

done by Hanjalic et al. (Ref. 3) may be necessary to extend the predictive capa- 

bility of this model beyond free shear flows. For the work described here the 

MDLS model was abandoned in favor of the k-E model. 

The idea behind the multi-wall ASM formulation was to account for the 

streamwise wall effects on the stress field, and thus try to capture the corner 

eddy that was missing in the previous calculations. Experimental observations 

(Refs. 37-39) indicate a two-eddy structure in all backward-facing step flows as 

shown in Figure 3.3. 

t Influence of walls parallel to the streamwise direction, such as the top and 
bottom walls in backward-facing step geometries. 

'+Influence of walls normal to the streamwise direction, such as the rearward 
face of the face. 
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The three dimensional counter-rotating corner eddy which involves lateral as 

well as streamwise and transverse variations extends only a short distance 

(usually less than a step height) downstream of the step, and a large two- 

dimensional primary eddy which involves only streamwise and transverse varia- 

tions occupies the rest of the recirculation zone. Figure 3.3 shows these two 

eddies and the other flow regimes encountered in backward-facing step geometries. 

In this type of flow, probably the one most informative yet simple describing 

parameter is the reattachment length defined as the distance from the step to 

the point where the separated shear layer attaches to the surface+. This, of 

course, is equal to the combined length of the two eddies. All flow parameters 

in the reverse flow as well as in the adjacent recovery region seem to correlate 

with this quantity, hence an accurate estimate of the reattachment length is 

essential for successful mean flow and turbulence field predictions. Since the 

reattachment length predicted by the ASM generally falls short of the experi- 

mental values by about a step height, it was conjectured that, if this corner 

eddy does grow in magnitude (due to streamwise wall effects), it would "push" 

the reattachment length further downstream and thus bring the computed values 

closer to the measurements. The reattachment length results are given in Table 

3.1 for the Kim, Kline and Johnston 3:l expansion ratio study (Ref. 39). The 

differences between the multi-wall and standard ASM (i.e., including cross-stream 

wall effects only) appear insignificant. The U-velocity, skin friction and 

peak E profiles presented in Figures 3.4 through 3.6 also show no significant 

changes between the two versions of the model. However, contrary to expectations, 

the multi-wall treatment predicts shorter reattachment lengths (by about 2%) 

and smaller corner eddies. The shortcomings of the multi-wall ASM are probably 

due to the cross correlations between the perpendicular walls that are not 

included in the present version , which adopts Reece's hypothesis (Ref. 21) 

that perpendicular wall effects are simply additive and cross correlations are 

small enough to be n,eglected. The only other s.uggestion available in the 

literature, to the best of our knowledge, is Gessner and Eppich's proposal (Ref. 

41) of an "image point" approach. This idea is still in a development stage and 

i- The point of reattachment is taken as the point where the shear stress 
vanishes. 
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is not well tested even for simple shear flows. Therefore, implementation of 

this scheme into recirculating flow computations does not seem appropriate for 

the present. The multi-wall ASM was not pursued further in plane backward- 

facing step flow calculations. 

TABLE 3.1. Reattachment Length Predictions for the Kim, 

Kline and Johnston Study (3:l Expansion Ratio) 

Models .--- 

ASM 

Reattachment Length 
in Step Heights 

6.16 

Multi-wall ASM 6.02 

Measurements 721 

Upon completion of the preliminary study (which eliminated two of the 

original six models) definitive predictions of the test cases were carried out 

using the k-E, "modified" k-s, ASM, and "modified" ASM models for the solution 

domain shown in Figure 3.7. Reattachment length results are given in Table 3.2. 

Predicted and measured profiles of U-velocity and shear stress (G) are compared 

for three different expansion ratios. These results are now discussed+ in more 

detail. 

A. U-Velocity Predictions 

Figures 3.3 through 3.10 present, at selected streamwise locations, the 

measured and predicted U-velocity profiles for the 3:l and 4:1, and the pre- 

dicted profiles for the 9:1 expansion ratios, respectively. A study of these 

results produces two important observations: one is that the relative perfor- 

mance of the models is region-dependent, i.e., best predictions are not 

'Complete sets of predictions for U, V, 22--F-- P, k, E, u , v , w , uv, P, p and P/E 
are available for all 3 test cases and 4 models (except for the norma ) Reynolds 
stresses with the k-e models) at 40 streamwise stations. To keep the presenta- 
tion manageable profiles for a given variable are presented at representative 
stations and for selected expansion ratios only. However, discussions to follow 
are based on the complete set of results that are kept on file at SAT. Further 
documentation of the results is given in Ref. (5). 
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FIGURE 3.7. Solution Domain Used in the Calculations. 
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necessarily obtained by the same model in both the reverse flow and recovery 

regions; and secondly, within a given region the estab.lished trends do not vary 

with expansion ratio. 

TABLE 3.2 Variation of Reattachment 

Length With Expansion Ratio? 

Reattachment Length in Step Heights (h) 

Expansion "Modified" "Modified" 
Ratio k-e k-e ASM ASM Measurements 

3:1, (40) 5.36 5.81 6.16 7.77 721 

4:1*+, 4.98 5.26 5.40 6.92 7.00 + 0.20 

9:1, (39) 4.29. 4.56 4.65 5.79 6.25 AI 0.25 

The U-velocity profiles are now discussed starting with the recirculation 

zone. There the "modified" ASM displays the best agreement with data for all 

expansion ratios. The differences between the remaining models are relatively 

small with the ASM, "modified" k-e, and k-e models showing, in that order, 

lesser degrees of agreement. Since they all underestimate the size of the 

reverse flow region as shown in Table 3.2 it is natural that the predicted 

velocities would suffer from "scaling" problems. The maximum mean reverse flow 

velocities, U/Uin, are given in Table 3.3 for all models and expansion ratios. 

The magnitude of this velocity seems to decrease slightly with increasing expan- 

sion ratio. Measured values are also reported in that table, however these 

probably do not represent the true maxima since relatively few measuring sta- 

tions were employed in this region (most of them were at least 2 step heights 

apart). Nevertheless, the agreement is surprisingly good. Overall, it was to be 

-I- Results were obtained with a non-uniform grid of 42 by 42 nodes for a solution 
domain length of 31 step heights (lh before the expansion and 30 downstream of 
the step). Computations were started at x/h = -1 with the measured inlet veloc- 
ity profiles. The inlet kinetic energy and dissipation rates were calculated 
from this profile using Prandtl's mixing length hypothesis. The convergence 
criterion (the maximum acceptable level of the residual sources) was set to 0.001. 

-t-f Private communication. Driver, D. M., and Seegmiller, H. L.; NASA-Ames 
Research Center, STE Branch, 1981. 
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expected that the "modifjed" ASM would show the best agreement with data, since, 

within the recirculation zone, the U-velocities are closely correlated with the 

reattachment length. This is further supported by the fact that the "modified" 

ASM predicts the lowest spreading rate for the separated shear layer and also 

displays the best agreement with the measured shear stress profiles. 

Expansion 
Ratio -- 

TABLE 3.3. Peak Mean Reverse Flow Velocities and Locations 

Model Predicted Measured+ -~ ------ 

ASM 

M.ASM 

k-e 

M.k-E 

ASM - 0.206 

M.ASM - 0.229 

k-e - 0.235 - 0.213 

M.k-& - 0.240 

ASM - 0.198 2.340 

M.ASM - 0.229 2.980 

k-e - 0.226 1.590 

M.k-E - 0.235 1.950 

Downstream of the recirculation zone the predicted recovery of the U- 

Peak Mean Reverse 
Flow Velocity 

U/ii 
in 

- 0.210 

- 0.230 - 0.243 3.210 5.333 
- 0.239 2.120 

- 0.245 2.340 

Location in Step 
Heights 

x/h 

Predicted Measured? 

2.550 

2.340 

3.210 

1.950 

2.120 

4.000 

velocity profiles is slow compared to the measurements at all expansion ratios. 

t The experimental values given here probably do not represent the true maxima 
since relatively few measuring stations were employed in the recirculation 
region. 
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Here the predictions by the ASM, "modified" k-e and k-c models are hardly dis- 

tinguishable from each other, and in general show fair agreement with data. 

When plotted against the actual downstream distance from the step the "modified" 

ASM seems to suffer from an even slower recovery rate. If the streamwise 

distance is normalized relative to the predicted reattachment points+, the 

differences between models diminish. However, the "modified" ASM still displays 

a somewhat different behavior from the other models. Close to the wall it con- 

sistently predicts lower velocities up to an inflection point (at a y/h of about 

0.9) followed by a swift increase (more so than the other models) to the free- 

stream values. This behavior can be partially explained by examining the com- 

puted shear stress profiles. Profiles predicted by the "modified" ASM generally 

reach their peak closer to the wall and drop sooner to the freestream levels 

than the other models. This could explain the more prominent inflective point 

and the faster rise to the freestream levels in the corresponding velocity pre- 

dictions. Close to the wall there is practically no difference in all the pre- 

dicted G profiles, so the lower velocities of the modified" ASM must be due to 

transport effects (less momentum carry-over due to the larger reverse flow 

region) and to the action of the normal stresses (the magnitude of predicted - 
a(pu 2 )/ax is smaller for the "modified" version). The differences between the 

models in this region diminish with increasing expansion ratio and streamwise 

distance. 

B. Shear Stress Predictions 

Figures 3.11 through 3.13 present at given streamwise locations the 

measured and predicted G profiles for the 3:l and 4:1, and the predicted pro- 

files for the 9:l expansion ratios, respectively. 

An analysis of these figures reveals similar trends in the K profiles at 

all expansion ratios. Within two step heights downstream of the step, the 

measured E profiles initially assume small gradually decreasing positive values 

that eventually change sign, and sharply increase in magnitude to a negative 

'This takes into account the variation in the starting point of the forward flow 
which may be responsible for the apparent differences between the predicted 
recovery rates. 
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peak around a y/h of 0.9. This is followed by a rapid drop to the free stream 

levels. Further downstream the % values experience a more gradual variation 

with y, increasing monotonically (in magnitude) to a negative peak at a y/h of 

about 0.5 before descending to their freestream values. From there.on the same 

qualitative behavior is observed with the profiles flattening out and the 

magnitude of the peaks decreasing with streamwise distance. In all regions 

higher expansion ratios favor a more gradual return to the freestream levels. 

Agreement between predictions and measurements range from satisfactory to 

good with the "modified" ASM generally showing the best agreement followed by 

the ASM, "modified" k-e and k-c models. The differences between the predictions 

diminish downstream of the recirculation zone where all models predict a more 

rapid drop to the freestream levels than the data indicate. This is especially 

true for the "modified" ASM which reaches its peak at lower y/h values and then 

descends to the freestream levels considerably sooner than the other models. 

In all cases the net effect of the modification seems to be a reduction in the 

shear stress levels; maximum peak w values drop by as much as 52 percent over 

the standard version for the ASM and about 12 percent for the k-e model. This 

decrease also seems to depend on the expansion ratio, with lower expansion 

ratios showing slightly less sensitivity to the modifications in both models. 

The behavior of F described above brings up several important observations 

for discussion. Firstly, the excellent agreement displayed by the "modified" 

ASM in the recirculation zone is not surprising since this model was also highly 

successful in predicting the size of this region. Similarly, the relative per- 

formance of the other models correlate closely with their reattachment length 

predictions. The effect of the modification on the shear stress computations 

may be explained by studying the expressions used in the models to calculate G. 

The k-e model employs the Boussinesq approximation (equation (24)) which has a 

transport coefficient uT defined as cuok'/e. Since one of the effects of the 

modification is to reduce the turbulent kinetic energy, it is reasonable to 

expect that this would also diminish ut and the shear stress. The ASM, on the 

other hand, uses a more complicated expression (equation (71)) that includes a 

transport coefficient, I? (a function of k), and the anisotropic normal stress 

components, e, and ev, to calculate i. Again the modification is observed to 
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reduce all these quantities leading to lower shear stress levels. The effects 

of the expansion ratio on the E values can also be explained by reference to 

the turbulent kinetic ene.rgy predictions. Since h,igher expansion ratios tend to 

diminish the levels of k for all models, it is plausible that the G values 

which have a strong functional dependence on k would behave similarly. 

C. Conclusions 

All of the models considered successfully predict the qualitative behavior 

of the mean flow and turbulence parameters in all test cases. The relative 

performance of the models however is region-dependent, and hence the best 

predictions are not necessarily obtained by the same model in both the reverse 

flow and recovery zones. The established trends within a given region do not 

vary with expansion ratio or deflection angle. The main effect of these factors 

is to change the size of the recirculation zone and the levels of the turbulent 

kinetic energy and shear stresses. Higher expansion ratios reduce both the size 

of this region and the levels of these quantities. Finally, the modification 

introduced to the models increases the predicted reattachment lengths and 

reduces the turbulent kinetic energy and stress levels in all test cases. In 

the recirculation zone all models tend to underpredict the size of this region 

in varying degrees. Generally, the "modified" ASM computes reattachment lengths 

that compare very favorably with measurements. Predictions by the remaining 

models are usually considerably shorter than the data. Here, the mean velocity 

as well as the turbulence parameters correlate closely with the reattachment 

length. Therefore the best agreement with the measured U- and V-velocities is 

achieved by the "modified" ASM-followed, in order, by the ASM, "modified" k-e, 

and k-E models. The scarcity of reliable turbulence measurements in this region 

makes valid quantitative comparisons a difficult task. Within the scope of 

available data, the agreement between the fi predictions and measurements is 

generally quite good; the "modified" ASM shows the best success-followed, in the 

above order, by the other three models. 

In the recovery region all four models predict too slow a recovery rate. 

Computations by the ASM, "modified" k-e, and k-e models are hardly distinguish- 

able from each other. The "modified" ASM displays an even slower recovery when 
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plotted against the actual distance from the step. Uhen this di'stance is 

normalized relative to the reattachment poi'nt the differences in the predicted 

recovery rates diminish. The agreement between the K predictions and measure- 

ments is generally satisfactory for all models. 

The following conclusions can be drawn from the assessment of the models 

for plane backward-facing step flows: 

(1) The relative performance of the models in subsonic backward-facing 

step flow computations is region-dependent, i.e., best predictions are not 

necessarily obtained by the same model in both the reverse flow and recovery 

regimes. 

(2) The "modified" ASM produces the best predictions in the reverse flow 

region but computes too slow a recovery rate in the relaxation regime where the 

other models show better agreement with the data. 

(3) A modular approach that uses the "modified" ASM in the reverse flow 

region and the standard version in the recovery regime appears to be the most 

appropriate scheme for predicting subsonic plane backward-facing step flows. 

3.2.2 Axisymmetric Flows 

Before the axisymmetric flow predictions are discussed, it is informative 

to review the past and present efforts in this area. Earlier work which used a 

stream function-vorticity ($ - Q) formulation identified three problem areas in 

axisymmetric flow predictions. These were: 

(1) Treatment of the corner point at the expansion plane 

(2) Treatment of the first-derivative term in the +-equation 

(3) Treatment of the wall boundary conditions near reattachment 

The corner-point treatment problem involves the proper establishment of 

the boundary conditions at the dump plane, i.e., at the intersection of the 

inlet wall and step. At this point, the dividing streamline that separates the 

recirculation zone downstream of the step from the remainder of the flow has its 

origin. For the proper prediction of recirculation zone length it is essential 

that at this point the dividing streamline have a zero slope, i.e., that it be 

78 



p 

parallel to the inlet wall contour. Within a stream function-vorticity formula- 

tion, this condition can be directly specified; for primitive-variable formula- 

tions it is specifiable only indirectly, through specification of the gradients 

in the axial and radial velocity components. The second problem involved the 
treatment of the term fg that appears in the axisymmetric form of the stream 

function equation. As a first derivative term it could not be treated numeri- 

cally in the same fashion as the second-derivative terms which describe the 

remainder of the diffusion of stream function: i.e., in the numerical solution 

of the stream function transport equation 

a2q 2 
-+y ax2 

+l?!!i= -rfi 
r ar 

approximation of the second derivative terms using second-order differences and 

the first derivative term using first-order upwind differencing introduces 

"wiggles" into the solution near the centerline. The problem was overcome by 
mk= noting that r ar u (for an incompressible flow) and treating the term in 

question as a "source" term. While this slowed the overall convergence of the 

iterative solution procedure (since the value of the axial mean velocity u is 

obtained for the computation at the last step) this change removed the inaccura- 
cies that resulted from the mixed differencing orders. 

Treatment of the wall boundary condition involves both numerical solution 

technique aspects and turbulence modeling aspects, since within a given overall 

flowfield solution technique it is generally not possible to use a sufficiently 

fine grid to provide the resolution necessary to avoid approximations near 

walls. The standard approach to wall boundary condition formulation is to use 

the law-of-the-wall to define an effective axial velocity at the first grid 

point away from the wall. In general, the logarithmic law of the wall provides 

a valid approximation, but it breaks down near the reattachment point where the 

axial velocity tends toward zero and the logarithmic portion of the boundary 

layer disappears. The solution is to include a treatment, again based on empiri- 

cal formulations, for the laminar sublayer region, and to treat the match point 

between the flowfield solution and the wall boundary as a variable rather than a 

prescribed location. This requires an iteration to be carried out to establish 
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both the friction velocity and the match point, but results in a considerable 

improvement in the prediction of recirculation zone length. 

The effects of the treatment chosen for each of these three problem areas 

in the context of a stream function-vorticity formulation is shown in Figure 

3.14. In all cases the basic two-equation turbulence model, as described in 

Section 2, was used in the flowfield calculation. The flowfield represented is 

an incompressible sudden expansion with two coaxial inlet streams, the inner of 

which is at a velocity level of l/3 of the outer stream. These data were 

reported by Habib and Nhitelaw (Ref. 41). Substantial differences in the pre- 

dicted centerline velocity results are observed for each of the changes dis- 

cussed in the preceding paragraphs and outlined in Figure 3.14. In each case, 

the same turbulence model has been used, illustrating the effects on the overall 

results of the specification of the numerical aspects of the problem. Since 

different numerical solution procedures involve different boundary condition and 

initial condition treatments, the variation illustrated here can be taken to 

indicate the discrepancies that may be encountered when the turbulence models 

developed using a given solution procedure are applied to analyses which use 

different procedures. 

Much of the computational work described in this section uses a signifi- 

cantly different numerical formulation than the $-Q code considered in the 

previous paragraphs. This code, which is based on the STEP family, is discussed 

in detail in Ref. 5. It solves two-dimensional (planar or axisymmetric) steady- 

state and time-dependent elliptic partial differential equations through an 

iterative procedure based on an integral control volume analysis with hybrid 

upwind finite differencingi and staggered grids tt . The flow and turbulence 

t In evaluating the values of the dependent variables at the cell boundaries one 
of two practices is usually adopted. If it is assumed that the variable in 
question varies linearly between the two nodes bracketing the cell boundary, the 
value of the variable at that boundary is taken as the arithmetical average of 
the nodal values. This procedure is usually referred to as "central differenc- 
ing". The second practice known as "upwind differencing" assumes that the value 
at the cell boundary is equal to that of the upwind node. However, a ."hybrid" 
scheme that employs one or the other of these procedures depending on the value 
of the cell Reynolds number may actually be superior to either of these schemes 
used alone. A version of this hybrid upwind finite differencing scheme first 
proposed by Spalding (Ref. 42) is employed in the STEP family. 
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equations are solved in primitive variables (U, V, P, k, E, etc.). Within the 

STEP methodology the treatment of corner cells is straightforward. Figure 3.16 

outlines the treatment used for typical scalar variable, and U- and V-velocity 

corner cells at the expansion plane of a backward-facing step geometry. Again, 

since it is not feasible in the STEP code to provide sufficient near-wall grid 

resolution to avoid approximations, the treatment of wall boundaries near 

reattachment remains a problem in turbulence modeling. In fact, the new non- 

equilibrium wall-functions discussed in Section 2.9 were developed to address 

this particular problem. The basic difference between the two approaches is 

that the STEP family uses the viscous sublayer/fully turbulent region interface 

kinetic energy instead of the friction velocity, while in the stream function- 

vorticity approach the thickness of the viscous sublayer is treated as a variable 

in matching the velocity profiles at the interface between the viscous sublayer 

and the turbulent interior flow. 

Using the STEP code, predictions of the axisymmetric incompressible 2:l 

diameter ratio sudden expansion flowfield described by Chaturvedi (43) were 

obtained with the k-e, "modified" k-c, /WI, and "modified" ASM models. A non- 

uniform 22 by 22 node mesh was used. This mesh is relatively coarse, so that the 

results may not be grid-independent. However, the comparative computations are 

believed to be representative of the capabilities of the different models. To 

provide a broader overall comparison, the results of the predictions carried out 

using the STEP code and the different turbulence models have been compared to 

stream function-vorticity code predictions using the k-e model, and to data 

obtained by Schmotolocha and Phung (Ref. 44) for the same geometry but at a 

substantially higher inlet Reynolds number (1.4 x lo6 compared to 2 x 105). 

tt For hybrid differencing purposes the STEP family uses a staggered grid in 
which the velocities are evaluated at the boundaries of scalar variable (P, k, E, 
etc.) cells. Hence, separate grids define the locations of the U- and V- 
velocities. A portion of these three grids is shown in Figure 3.15. 

The solution domain is arranged so that the outer surfaces of the boundary 
scalar cells coincide with the physical boundaries of the flow field. The 
advantages of this scheme become apparent when the boundary conditions are 
incorporated into the finite difference formulation. Figure 3.16 shows the 
solution domain used for a typical backward-facing step geometry. 
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Reattachment length results are given in Table 3.4. Excluding the "modi- 

fied" ASM which overpredicts the reattachment length by some 40%, the agreement 

between the k-E, "modified" k-E, and ASM computations , and the Chaturvedi measure- 

ments is remarkably good. The k-E model predictions obtained using the Q-Q 

code also show excellent agreement with the data and the STEP code computations. 

The apparent failure of the "modified" ASM is at present difficult to interpret. 

Possible causes are that: the modification to the model may perform poorly in 

axisymmetric flows, or for low expansion ratiost, or maybe for both. A series 

of carefully selected test runs to be carried out during continuing work should 

identify the source of the problem. The differences between the remaining three 

models are small. This was anticipated because in low expansion ratio axisym- 

metric geometries, the flow is dominated by the pressure field, and the influ- 

ence of the turbulence models is correspondingly less important. 

TABLE 3.4. Reattachment Length Predictions for the 

Chaturvedi (Ref. 43) Study (2:l Diameter Ratio) 

Models (STEP Code) 

k-E 

"modified" k-E 

ASM 

"modified" ASM 

Chaturvedi Data (Ref. 43) 

Schmotolocha & Phung Data (Ref. 44) 

Stream function-vorticity code predictions 
(k-E model) 

Inlet Con_dition (both-computational techniques) 

Reynolds number (based on step height): 2 x lo5 

Inlet free-stream velocity (Uin): 31 m/s (see Figure 3.17a) 

Turbulence intensity: 1 x 10e5 U:n (assumed uniform) 

tThe lowest expansion ratio tested in planar flows was 3:l. 

Reattachment Length 
in Step Heights 

7.91 

8.07 

8.08 

11.35 

= 8.00 

= 9.00 

8.00 
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Figure 3.17 presents the predicted and measured U-velocity profiles at 

selected streamwise locations. The k-e, "modified" k-c, and ASM models show 

about equal success in predicti,ng the velocity field. The .agreement with data 

is generally satisfactory even tho,ugh all three models tend to underpredict the 

velocities both in the recirculation zone and across the separated shear layer. 

The ASM displays slightly better agreement near the flow centerline, while the 

stream function-vorticity results seem to agree better data in the separated 

shear layer. The "modified" AStil velocity predictions cannot be compared with 

the measurements unless they are properly scaled relative to the predicted reat- 

tachment length. This can be accomplished by defining a new streamwise distance 

as (xR - x)/h and plotting the predicted velocity profiles in the recirculation 

region relative to this distance. xR is the computed reattachment length and h 

is the step height. The centerline velocity calculations given in Figure 3.18 

follow the trends established above. The invariance with Reynolds number of 

geometrically similar axisymmetric flows is confirmed by the excellent agreement 

throughout the channel between the radial profiles of velocity measured by 

Chaturvedi (Ref. 43) and by Schmotolocha and Phung (Ref. 44)t - except that 

probe interference effects are evident in the Ref. 44 data near the centerline. 

Profiles of turbulent kinetic energy are compared with Chaturvedi's 
22 experimental data in Figure 3.19. For these comparisons, the assumptions w = v 

has been made in the experimental data reduction: 
2 2 

Chaturvedi presents profiles 

of u and v only. At x/R, = 1.0, both the shape and magnitude of the turbulent 

kinetic energy profiles are predicted extremely well using the stream function- 

vorticity code. The four models tested using the STEP code all successfully sim- 

ulate the shape of the profiles, but they either overpredict the magnitude in the 

case of k-E, "modified" k-e, and ASM models or fall short of the data for the 

"modified" ASM. Further downstream (x/R, = 2.0 and 3.0), while the magnitude of 

the peak turbulence energy is predicted quite well using the Q-Q formulation and 

reasonably well by the k-e, "modified" k-c and "modified" ASM models using the 

STEP code (the standard ASM still overpredicts the data, progressively greater 

disagreement between the predicted level of turbulence energy and that measured 

tAbbott and Kline (-Ref. 37) reached the same conclusion for plane backward- 
facing step flows. However, these conclusions only apply to flows that are 
fully turbulent throughout the channel or pipe. 
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by Chaturvedi is evident near the flow centerline. Some disagreement can also 

be seen within the recirculation region. In th+ laxer case at least part of 

the disagreement is related to the assumpti+n w 
-2 

= v2 made in obtaini.ng a turbu- 

lent kinetic energy value from the u and v data presented by Chaturvedi, but 

this is not necessarily the case with respect to the near-centerline turbulent 

kinetic energy levels. In this region the existence of large scale fluctuations 

in an essentially Inviscid flow has been observed in other experiments (Ref. 45), 

and these fluctuations, which do not directly contribute to the Reynolds stresses, 

are responsible for the disagreement between the experiment and the theoretical 

predictions in this region. As mixing proceeds towards the flowfield centerline, 

the contribution of these large-scale fluctuations to the apparent turbulence e 

energy decreases, as is evidenced by the rapid convergence of the experimental 

and predicted turbulent kinetic energy profiles as the flow proceeds downstream, 

Figures 3.19e and 3.19f. However, some of the energy involved in these large 

scale motions does contribute to the overall flowfield mixing rate, as is shown 

by the velocity profiles in Figures 3.17f and 3.17g: this contribution is not 

adequately accounted for by any of the turbulence models. These results seem to 

indicate that in low expansion ratio axisymmetric flows, the mean velocity and 

turbulence predictions do not change significantly with different turbulence 

models. Simple k-c model predictions appear to be at least as good as the more 

sophisticated ASM computations. 

The effects of ordered large scale fluctuations on the turbulent energy 

profile along the flowfield centerline are shown in a fairly dramatic fashion by 

the centerline turbulent kinetic energy profile comparisons shown in Figure 3.20. 

However, as Figure 3.20 indicates, the overall effect of this phenomenon on the 

centerline mean velocity, and thus the overall mixing rate, is small. Figure 

3.20 can also be taken to show that the overall results indicate an essentially 

inviscid deceleration of the flow up to the end of the recirculation region, 

followed by a turbulent mixing process downstream. The coincidence of the end of 

the region of "inviscid" deceleration and the reattachment point is a feature of 

this particular geometry (a 2:l radius ratio expansion), since shear layer or jet 

potential core mixing rates are independent of geometry while the reattachment 

length can be correlated directly with the expansion step height. For these pre- 

dictions ASM shows relatively good agreement with the data. The standard and 
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"modified" versions of the k-c model tend to underpredict the magnitude of the 

turbulence kinetic energy but successfully simulate its behavior along the cen- 

terline. Both the "modified" ASM STEP code results and the $-Q code calculations 

seriously underpredict the data. 

Since this study included only one expansion ratio no definitive 

conclusions (other than the comments made above) can be drawn on the performance 

of the models. A follow-up study covering a range of expansion ratios is needed 

for further evaluation of the models. The discrepancies between the Q-Q, k-c 

model calculations and the STEP code predictions are probably due to the false 

diffusion effects associated with the relatively coarse grid used in the STEP 

code computations. 

3.3 SUPERSONIC RECIRCULATING FLOW 

Efforts in this area were concentrated on implementing the k-E model 

(Section 2.5) and the non-equilibr i 

the TWODLE code developed by J. P. 

ing on the future use of TWODLE it 

lence models-'+ in the code and imp 1 

required more extensive coding ini t 

that: 

urn wall-function treatment (Section 2.9) into 

Drummond at NASA-Langley (Ref. 46). Reflect- 

was decided to maintain the built-in turbu- 

ement the k-E model as an option. This 

ially but should be beneficial in the sense 

(1) The original structure of the code (including all subroutines was kept 

intact; therefore, the code can be executed with or without the k-e model. 

(2) Since the model was implemented into a working code (rather than build- 

ing the code around the model) initial debugging was expected to be less time 

consuming. 

(3) This modular approach could also facilitate the incorporation of the 

algebraic stress model which can be introduced as another option. 

These considerations led to the model implementation discussed next. 

t It should be noted that Chaturvedi data were obtained using hot-wire anemometers 
and relatively primitive techniques. The accuracy of the turbulence data may 
thus be questionable. 

tt Basically algebraic eddy viscosity specifications. 
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3.3.1 Scheme I 

The initial approach taken was to incorporate the k and E transport equa- 

tions into the MacCormack time-split finite difference technique of TWODLE, and 

solve them simultaneously with the velocity and, if desired, chemistry fields. 

This brought about a basic change in the general form of the TWODLE governing 

equations. A source vector fi was introduced as shown in equation (Al) of 

Appendix A to treat the production and dissipation terms associated with the 

k and E equations, or any other source-sink term in the governing equations. 

The new form of the governing equations thus became 
-f 

?!+$+$=H 
at 

where all the terms are defined in Appendix A for the k-c model. 

Within the TWODLE format two ways of incorporating the k and c equations 

into the integration procedure were thought to be possible. One was to solve 

them in the Ly(At/2) Lx(At) Ly(At/2) symmetric operator sequence at both the 

intermediate (n + 1) and new (n + 1) time levels with the generation and 

destruction terms calculated only during the Lx operator step. The solution 

algorithm thus became 

(1) Guess or specify initial fields for all variables. 

(2) Go through the symmetric operator sequence. 

Ly(nt12) Source - 
Lx(At) 

sink terms, p(~ - E) and &k(cc P - 

calculated during the operator s 4 

cE E), 

epi-,. 2 

Ly(dt/2) 

to obtain the new (n + 1) p, U, V, k and E fields. 

(3) Calculate +, from its definition in terms of c,,, p, k and E. 

(4) Go back to step 2 until steady-state is reached. 

The second method was to maintain the practice of solving the k and E transport 

equations in the LyLxLy operator sequence, but calculate the source and sink 

terms at the old (n) time level before the operator sequence was started to 

advance the time. This changed the solution algorithm to 
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(1) Guess or specify initial fields for all variables. 

(2) Calculate pt from its definition in terms of cW, p, k and E. 

(3) Calculate source and sink terms for the k and E equations, 

PIP - s) and pE/k(c P - c 
7 c2 

E), respectively. 

(4) Go through the symmetric operator sequence Ly(At/2) Lx(At) Ly(At/2) to 

obtain the new (n + 1) p, U, V, k and E fields. 

(5) Go back to step 2 until steady-state is reached. 

Although both of these approaches seem plausible, many variations within 

these two methods (especially for the former) were tried without success to 

achieve stable results. These variations are described in Appendix B; a total 

of seven approaches were examined. Numerical instabilities due to the stiffness 

of the source-dominated k and E transport equations seemed to be the cause of 

the problem. All non-linear equations display varying degrees of stiffness 

depending on the nature of the equation, the type and strength of the non- 

linearity, and the effects of coupling with other equations in the solution 

'algorithm. The k and E equations are especially stiff in the sense that they 

are coupled and at high Reynolds numbers+ they become source-dominated, i.e., 

the levels of k and E are determined to a large extent by the relative magni- 

tudes of their generation (source) and destruction (sink) rates. At high 

Reynolds numbers convective and diffusive transport are comparatively minor. 

Therefore, the treatment of these source-sink terms is of vital importance in 

achieving stable results. Our efforts so far have not produced a stable method 

for treating source-dominated equations in the MacCormack time-split finite 

difference technique of TWODLE. 

3.3.2 Scheme II 

This method adopts a new formulation where the k and e equations are solved 

only once at each time step after the velocities are advanced in time and the 

'Basically for all flows of aerodynamic interest. 
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source terms are calculated usi.ng these updated velocities. In this formulation 

the solution a.lgorithm has the followi.ng form 

(1) Guess or specify initial fields of all variables. 

(2) Go through the symmetric operator sequence Ly(.At/2) Lx(.At) Ly(At/2) 

to obtain the new (n + 1) p, U and V fields. 

(3) Solve the k and E transport equations (explicitly) using the new 

(n + 1) velocity and density, and the old (njk, E and pt fields to 

obtain the updated (n + 1) k and E values. 

(4) Calculate + from its definition in terms of c~, p, k and E. 

(5) Go back to step 2 until steady-state is reached. 

It should be noted that this method uses a "mixed" time level formulation 

(U, V and p are at the n + 1 level, and k, E and pt are at the n level) and 

solves the k and E equations sequentially and explicitly. The finite difference 

form of the k and E equations and the changes introduced into TWODLE for model 

implementation are outlined in Appendix C. With this approach a stable solution 

appears to be achieved, although the computations have not yet been carried to 

steady state. 

Table 3.5 presents the U-velocity profiles as predicted by the k-E, and 

the TWODLE built-in mixing length and Baldwin-Lomax algebraic models for a 

Mach 5 10" duct compression corner flow. Results were obtained using a 21 by 

21 node mesh for a solution domain length of L = O.lm and a width of h = 0.02m. 

A uniform inlet velocity profile and turbulence intensity were assumed. A 

constant+ At of 7.5 x lo-' second was employed and 1000 time steps tt were taken. 

Results show that the k-c model generally predicts profiles that are in close 

agreement with the Baldwin-Lomax model. The mixing length model, on the other 

hand, produces profiles that are less steep in the vicinity of the walls than 

the other models. The k, E and + fields as predicted by the k-c model also 

tA constant At was used to aid the stability of the k-c model. 

'+Computing budget considerations limited the total time steps taken to 1000. 
Thus steady-state results were not obtained. 
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TABLE 3.5. U-Velocity Profiles for the Mach 5 10" 

Ducted Compression Corner Test Case 

x/L = 0.20 

Ylh 

0.0 
0.010 

0.026 

0.048 

0.077 

0.117 

0.922 

0.952 

0.974 

0.989 

1.000 

k-c ITURB = 2 ITURB = 1 

0.0 0.0 0.0 

0.716 0.699 0.577 

0.903 0.901 0.835 

0.967 0.967 0,963 

0.996 0.997 0.998 

1.000 1.000 1 .ooo 

1.000 1.000 1 .ooo 

1.000 1.000 0.989 

0.986 0.985 0.871 

0.884 0.874 0.600 

0.0 0.0 0.0 

x/L = 0.35 

-Ye- 
0.132 

0.142 

0.155 

0.174 

0.199 

0.234 

0.279 

0.336 

0.404 

0.482 

0.933 

0.959 

0.977 

0.991 

1.000 

k-c ITURB = 2 ITURB = 1 

0.0 0.0 0.0 

0.610 0.606 0.532 

0.807 0.806 0.723 

0.917 0.916 0.865 

0.937 0.937 0.930 

0.934 0.961 0.967 

0.990 0.991 0.994 

1.000 0.999 1.000 

1.000 1.000 1.000 

1.000 1.000 1.000 

1.000 1.000 0.998 

0.999 0.999 0.971 

0.982 0.981 0.816 

0.870 0.866 0.560 

0.0 0.0 0.0 

‘/‘in 

Where h is the height of the duct, L is the length of the solution domain, and Uin is the maximum 

inlet velocity. ITURB is a code parameter that controls selection of the turbulence model. 

ITURB = 1 is a mixing length model for non-recirculating flows and ITURB = 2 is the Baldwin-Lomax 

algebraic eddy viscosity model. 



x/L = 0.50 

Ylh 
0.176 

0.185 

0.198 

0.216 

0.240 

0.272 

0.315 

0.369 

0.434 

0.742 

0.861 

0.904 

0.936 

0.961 

0.978 

0.991 

1.000 

k-E ITURB = 2 ITURB = 1 

0.0 0.0 0.0 

0.656 0.631 0.490 

0.845 0.843 0.701 

0.946 0.951 0.891 

0.993 0.998 0.991 

1.005 1.005 1.003 

1.002 1.002 1.002 

1.001 1.001 1.000 

1.000 1.000 1.000 

1.000 1.000 1.000 

1.000 1.000 1.000 

1.000 1 .ooo 1.000 

1.000 1.000 0.998 

0.996 0.997 0.967 

0.967 0.970 0.793 

0.818 0.822 0.541 

0.0 0.0 0.0 

TABLE 3.5. U-Velocity Profiles for the Mach 5 10" 

Ducted Compression Corner Test Case (continued) 

‘/‘in x/L = 0.80 

.A!!- 
0.176 

0.185 

0.198 

0.216 

0.240 

0.272 

0.315 

0.369 

0.434 

0.742 

0.861 

0.904 

0.936 

0.961 

0.978 

0.991 

1.000 

k-e ITURB = 2 ITURB = 1 

0.0 0.0 0.0 

0.762 0.818 0.540 

0.965 0.970 0.792 

0.997 0.998 0.967 

1.000 1.000 0.998 

1.000 1.000 1.000 

1.000 1.000 1.000 

1.000 1.000 1.000 

1.000 1.000 1.000 

1.000 1.000 1.000 

1 .ooo 1.000 1.000 

1.000 1.000 1 .ooo 

1.000 1.000 0.998 

0.997 0.998 0.967 

0.965 0.970 0.792 

0.762 0.818 0.540 

0.0 0.0 0.0 

U/Uin 



seem plausible. However, before any valid comparisons can be made between the 

models steady-state results should be obtained for a number of test cases 

representing both elliptic and parabolic flows. 

From these results, it appears that a stable way of incorporating the k-E 

model has been devised: no instabilities were encountered within 1000 time 

steps. However, in its present form this scheme has two drawbacks: firstly, it 

requires a small time step (approximately 2 orders of magnitude smaller than the 

time step used with the other models) and secondly, the k and E transport equa- 

tions are solved in the physical rather than in the transformed coordinates, 

which introduces inaccuracies for irregular geometries. The first drawback can 

be eliminated by devising an implicit solution algorithm (ADI, block-solver, 

etc.); ideally the k and E equations will be solved simultaneously (not sequen- 

tially) using a linearization technique such as Newton-Raphson. This will 

remove the small time step restriction and produce results that are more plausi- 

ble (since physically things do happen simultaneously). The second drawback 

can be removed by solving the k and E equations in the transformed coordinates 

of TWODLE. This is straightforward analytically, but in practice it would 

require extensive programming efforts and code changes. Both of these sugges- 

tions are important and should be considered in future code development efforts 

if this method is adopted. If, however, a new implicit version of TWODLE that 

does not use time-split finite differencing is available in the near future, the 

k and E transport equations may be successfully implemented into that solution 

algorithm since the problems with the initial version of TWODLE were largely due 

to the time-split finite differencing technique. 
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4. CONCLUSIONS AND FUTURE WORK 

The conclusions reached from the work outlined in this report can be 

summarized as follows. 

4.1 SUBSONIC PLANAR RECIRCULATING FLOWS 

(a) The relative performance of the models in subsonic plane backward- 

facing step flow computations-is region-dependent, i.e., best predictions are 

not necessarily obtained by the same model in both the reverse flow and recovery 

regimes. 

(b) The "modified" ASM produces the best predictions in the reverse flow 

region but computes too slow a recovery rate in the relaxation regime where the 

other models show better agreement with data. 

(c) A modular approach that uses the "modified" ASM in the reverse flow 

region and the standard version in the recovery regime appears to be the most 

appropriate scheme in predicting subsonic plane backward-facing step flows. 

(d) The standard and multi-scale k-e models are not recommended for sub- 

sonic planar recirculating flow predictions. However, the concept of multi-time 

and -length scales is physically sound, and is also appealing in the sense that 

it enables separate modeling of each energy region in turbulent flows. 

4.2 SUBSONIC AXISYMMETRIC RECIRCULATING FLOWS 

Evaluation of the relative performance of the models in subsonic axisym- 

metric backward-facing step flow calculations was not attempted since only one 

diameter ratio (2:l) was tested. Preliminary results indicate very little 
difference between the k-e, "modified" k-E, and ASM predictions; all show good 

agreement with the Chaturvedi (Ref. 43) data. The "modified" ASM predicts too 

long a reattachment length and consequently suffers from scaling problems. More 

diameter ratios need to be tested before the above observations can be 

generalized. 
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4.3 SUPERSONIC RECIRCULATING FLOWS 

Incorporation of the k-E model in TWODLE for supersonic recirculating flow 

predictions was hindered by numerical stability problems. Finally, a scheme was 

devised that appears to be stable but requires a very small time step due to the 

explicit nature of the scheme. Also, the fact that the k and E transport equa- 

tions are solved in the physical coordinates may introduce inaccuracies for 

irregular geometries. Two options are available: modify this scheme so that 

the k and E equations are solved implicitly and simultaneously in the trans- 

formed coordinates, or implement the k-c model into the new implicit version of 

TWODLE that does not use time-split finite differencing. 

4.4 FUTURE WORK 

Future work in the examination of turbulence models for application to 

SCRAMJET combustors is expected to concentrate in three major areas. The exami- 

nation of turbulence model performance in axisymmetric recirculating flows will 

be extended to a greater range of diameter ratios to examine whether the model 

performance observed in the work discussed in this report shows similar charac- 

teristics at other area ratios. Implementation of turbulence models in the 

supersonic-flow TWODLE code will continue, with further refinement of the k-e 

two-equation formulation and incorporation of an ASM formulation as well. 

Questions that have arisen from this work regarding the use of an explicit 

formulation for the turbulence model have ramifications not only with respect 

to computational techniques but also with respect to the architecture of the 

computer utilized, and these will be further investigated. Finally, the turbul- 

ence model assessment work will be extended to reacting flows with an emphasis 

on the development and implementation of techniques to account for turbulence- 

finite rate chemical kinetics interaction. 

All of this work has as its goal the definition of a set of turbulence 

models suitable for the different characteristic regions encountered in a scram- 

jet flowfield. Along with this definition, algorithms to allow transition from 

one turbulence model to another within the context of a given flowfield solution 

procedure are to be developed. Major strides toward the definition of suitable 

turbulence models for different flowfield regions have been made in the work 
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described in this report, and the work currently underway is expected to complete 

the turbulence model definition effort. 
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APPENDIX A 

THE k-E MODEL FORMULATION FOR THE TWODLE CODE 

The mean flow and turbulence model equations for the k-E model can be 

written as follows for two-dimensional elliptic planar flows: 

Conservation of Mass 

32, a a 
at ~pu+aypv=o 

x-Momentum 

gf PU + & pu2 + 

aP a =--+- au 
ax ax 2uT z - 2/3pT ax (" + $) - 2,3pk] + i&y ["T (i$ + g)] 

y-Momentum 

k transport equation 

aPk r+$pUk + 
a ?- pVk = pp - PE + ax 

9 

E Transport Equation 

&+a a 
at i$j- PUE + ay PVE 

(g + g) - 2,3,,] 

= CE P LP 
lk 

ak 
' ay )-I 
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where 

u= streamwise mean velocity component 

V = transverse mean velocity 

P = pressure 

k = turbulence kinetic energy 

E = turbulence kinetic energy dissipation rate 

P = density 

1-I = dynamic viscosity 

P = production rate of k, 

- 2/3k (g + 5) 

vT = pt + 1-1 (total viscosity) 

% d (turbulent viscosity) = CUP E 

ak and oE are the Prandtl numbers for k and E, respectively, and cE , cE 
12 

and C~ are constants. 

Following Ref. 46 these equations can be put in TWODLE form by defining the fi, 

F, g and fi vectors as 
+ au+?E+iL~ 

at ax ay 

where 

P 

PU 

jj= PV 

pk 

PC 

PU 

PUU t ox 

F'= PUV t T 
XY 

PUK t Dk 

PUe + DSX 
X 

(Al ) 
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PV 
PUV + T 

E= YX 
PVV + (5 

pvk + D; 

P'k t D y 
"Y 

and 

720 

(T 
X = ’ + 2/3UTD - 2~ T $f + 2/3pk 

T =T 
XY yx 

"Y = ' ' 2/3p~D - 2)~ .?!! + 213~k 
T ay 

9 = PC k2 
G- 

(A5) 

CM) 

(A7) 

(A8) I 

(A91 



Ok 
cl-l = 3,'2 - 

Ckl 

0 = 
K2 

Ic (cc* - cc1 q2 

I 
Z!L+?l! 
ax ay compressible flows 

D= 

0 incompressible flows 

Currently recommended values for the constants are 

C = 0.09 
1-I 

Ckl 
= 0.22 

C 
EJ = 1.44 

C = 1.92 
e2 

K = 0.4187 

with these values ak and oE become 

(AlO) 

(Al 1) 

(A121 

(Al31 

t ok actually becomes 0.614, however a value of 1 is more common in the litera- 
ture. There are no significant differences in the predictions obtained with 
these two values. 
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APPENDIX B 

UNSUCCESSFUL APPROACHES TO THE INCORPORATION OF 

THE TWO-EQUATION I<- E MODEL IN THE TWODLE CODE 

Several variations within the confines of one approach to the incorporation 

of the two-equation k-c turbulence model in the TWODLE code were examined during 

this program. Although all were ultimately unsuccessful, they are outlined in 

this Appendix so that similar problems with other stiff equation subsets may be 

avoided in numerical algorithms similar to that used in TWODLE. Testing was 

carried out for a Mach 5 10" ducted expansion-compression case using a 21 by 21 

mesh. Numerical stability problems were encountered due to the stiffness of 
the source - dominated k and E transport equations (equation (Al) in Appendi-x 

A). 

Within the TWODLE format there are at least two ways of incorporating the 

k and e equations into the solution procedure. One is to solve them sequentially 

in the L (At/i?) Lx(At) Ly(At/2) symmetric operator sequence at both the interme- 

diate (h) and new (n + 1) time levels with the generation and destruction 

terms calculated only during the Lx operator step. The second way is to solve 

them only once at each time step (n to n + 1) after the velocities are advanced 

time and source terms are calculated using these updated velocities. Within 

first mentioned scheme, seven different variations were tested to overcome 

the stiffness problem. These are discussed next. 

The seven schemes tested cover a range of source-sink treatments from fully- 

explicit to variations within a quasi-implicit formulation. The diffusion and 

convection terms are calculated explicitly in each case. The general form of 

the source-sink terms for the k and E equations are recalled from equation (Al) 
as 

P(P - E) for k, (Bl> 

and 

pe/k(c 
7 

P _ cE > for E, 
2 

(B2) 
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where all the terms are defined in Appendix A. Details of each treatment are 

summarized below in connection with these two expressions. In all cases a con- 

stant At of 7.5 x 10 -9 set was used throughout the computations. 

Case 0 

This is the fully explicit case where p, P, E, and k are all evaluated at 

the old time level. 

Calculations became unstable after 59 time steps. 

Case 1 

This is the first variation within the quasi-implicit formulation. P is 

calculated implicitly after the new velocity field is obtained. p, E, and k are 

explicit at the old time level. 

Calculations became unstable after 59 time steps. 

Case 2 

This is the second variation within the quasi-implicit formulation. P and 

p are calculated implicitly after the new velocity field is obtained. E and k 

are explicit at the old time level. 

Calculations became unstable after 59 time steps. 

Case 3 

This is the third variation within the quasi-implicit formulation. P and 

p are calculated implicitly after the new velocity field is obtained. The k 

that appears in equation (52) is now substituted for by the new k value. c is 

explicit at the old time level. 

Calculations became unstable after 62 time steps. 

Case 4 .~ 

This is the fourth variation within the quasi-implicit formulation. P and 

p are calculated implicitly after the new velocity field is obtained. The term 

s/k that appears in equation (B2) is.now cafculated as 

e/k = 
c,,pk2ht c,,pk 

=- 
k % 
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where both p and k are at the new time level. E is explicit at the old time. 

Calculations became unstable after 60 time steps. 

Case 5 

This is the fifth variation within the quasi-implicit formulation. P and p 

are calculated implicitly after the new velocity field is obtained. The terms 

c/k and E that appear in equation (B2) are now calculated as 

c/k = 
cppk2ht c,pk 

=- 
k 11, 

L 

and 

& 
c,pk2 =- 

respectively, where both p and k are at the new time level. E in equation (Bl) 

is explicit at the old time. 

Calculations become unstable after 59 time steps. 

Case 6 

This is the sixth and final variation within the quasi-implicit formula- 

tion. P and p are calculated implicitly after the new velocity field is 

obtained. The term E in equation (Bl) is calculated as 

E = c,,pk2ht 

where both p and k are at the old time level. The e/k and E terms that appear 

in equation (B2) are calculated as 

c,pk 
c/k = - 

% 

and 

cppk2 
E=- 

I-it 
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respectively, where both p and k are now at the new time level. Calculations 

go unstable after 27 time steps. 
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APPENDIX C 

FINITE DIFFERENCE FORM OF THE k AND E 

TRANSPORT EQUATIONS FOR THE TWODLE CODE 

The finite difference forms given below use a "mixed" time level formulation 

where U, V, p are at the new n + 1 time level, and k, c, ut are at the old time 

level n. 

C.l k Transport Equation 

g pk -t .& pUk + g pVk = PP - PE 

aPk -= 
at - k pUk - g pVk + PP 

where 

a. Temporal Term 

n+l k n+l 
apk _ pi,j i,j 

n k" 
-- - 'i,j i,j 
at At 

b. Convective Terms (with upwind differencing) 

:PUk)i _ 1 i 
ifU>O 

(P’Jk)i,j - ’ , , , 
Ax 

aPUk - - - 
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ifV>O 
(PVk)i j 9 - (PVk)i j _ 1 

'- 
AY 

?Q$L 

b'k) - 
ifV<O i,j + 1 - (PVk)i,j 

AY 

C. Source-Sink Terms 

Pp = Pi,j'i,j 

PE = Pi,j&i,j 

d. Diffusion Terms (with central differencing) 

a I-it 
( 1 

ak 
ax <+“l ax 

k i + l,j 5A 
- ki 

- Xi 
i + 1/2,j Ax Ax 

i - l/W 
Ax 

a % ak 
v q+p ay ( I- 

k ki . - ki j _ 1 , 
AY' 

= i,j + l/2 i,j - l/2 
AY 

C.2 E Transport Equation _--- 

$PEfk 
a PUE + ay PVE 
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aPE -= 
at - & PUE -&Ak+c pip-c 

7 &2 
PfE 

where 

a. Temporal Term 

n+l n+l 
ap& _ pi,j 

n n 
-- 'i,j - 'i,j '-i,j 
at At 

b. Convection Terms (with upwind differencing) 

ifU>O 
(PuE)i ' - (PuE)i _ 1 ' , 9 

Ax 

am - -- 
3X 

(PUd 
if U<O 

i + l,j - (P!IE)i,j 

Ax 

ifV>O 
(PVE)i ' - (EVE). . _ 1 YJ 1 ,J 

AY 

if V<O 
CPVE)i ' + 1 - (PVE). * , 1 ,J 

AY 

C. Source-Sink Terms 

c p;p=c 
&l ~1 ( ) PC k i,j'i,j 

c p+=c 
E2 c2 t ) P’ k i,j’isj 
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d. Diffusion Terms (with central differencing) 

a % 
( 1 

ac 
ax q’” ax 

'i + 1,j - 'i,j _ 3Lj - Ei - 1,j 
Ax Ax 

i + 1/2,j i =- I____ - _-, - -____ --- - 1/2,j 
Ax 

E. i,j + 1 - Ei,j E. 
1 J - 'i,j - 1 

AY AY 
= i,j + l/2 i,j - l/2 

L _--.---. _-----__ 
AY -.--I_~~ 

C.3 Wall Function Treatment 

Wall functions for the modified TWODLE code are obtained using the non- 

equilibrium wall-functions of Chieng and Launder (Ref. 26) discussed in 

Section 2.9. However, since TWODLE uses nodal values rather than control 

volume averages i- , some changes were made in implementing these wall functions. 

A typical near-wall region is shown in Figure C.l. Here it is assumed that node 

w is at the wall, and w + 1 is in the fully turbulent region 

Y w+lkv 
l/2 

V 
> 20, 

where Y, + l is the distance from node w + 1 to the wall, and kv is the turbu- 

lent kinetic energy at the edge of the viscous-sublayer, y,. Following 
Ref. 26 the wall shear stress Tw can be expressed as 

T, = KAPUT + lkv 1,2,(,,. ‘w + :“!?2) 

-t Chieng and Launder wall-functions use near-wall cell integration to calculate 
mean production and dissipation rates for those cells. 
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FIGURE C.l. Typical Near-Wall Region. 
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where K* = 0.4187~"~ and E* = eK*Rev/Re i Also the shear stress at node 
u v - 

w + 2 by definition is 

T w+2=%($+%)w+2 

If it can be conjectured that the shear stress varies linearly between the wall 

and node w + 2 (a plausible assumption for most flows with a reasonably fine 

near-wall grid), the shear stress at node w + 1 can be obtained by interpolating 

between nodes w and w + 2 

T w+l - Yw) 

Then the turbulent viscosity at w + 1 can be calculated from its definition 

'It w + j = &+i$w + , 

The production rate of turbulent kinetic energy at w + 1 now becomes 

and the near-wall diss pation rates are expressed as 

ew+1= k w+l 3'2/cL(Yw + 1 - Y,) 

and 

E 
W 

following Spalding (Ref. 29), and Pope and Whitelaw (Ref. 28), respectively. 

'The universal viscous-sublayer thickness constant Rev is assumed to be 20. 
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